长江流域资源与环境 >> 2021, Vol. 30 >> Issue (6): 1317-1328.doi: 10.11870/cjlyzyyhj202106004

• 生态环境 • 上一篇    下一篇

TRMM和GPM卫星降水数据在中国三大流域的降尺度对比研究

崔路明1,王思梦1,刘轶欣1,蒋  娅1,董林垚2,黄  昌1,3,4*   

  1. (1.西北大学城市与环境学院,陕西 西安 710127;2.长江科学院, 湖北 武汉 430010;3.西北大学陕西省地表系统与环境承载力重点实验室, 陕西 西安 710127;4.西北大学地表系统与灾害研究院, 陕西 西安 710127)
  • 出版日期:2021-06-20 发布日期:2021-06-30

Comparative Study on Downscaling of TRMM and GPM Satellite Precipitation Data in Three Major River Basins in China

CUI Lu-ming1, WANG Si-meng1, LIU Yi-xin1, JIANG Ya1, DONG Lin-yao2, HUANG Chang 1,3,4   

  1. (1.College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China;2.Changjiang River Scientific Research Institute, Wuhan 430010,China;3.Shaanxi key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China;4.Institute of Earth Surface System and Natural Hazards, Northwest University, Xi’an 710127, China)
  • Online:2021-06-20 Published:2021-06-30

摘要: 以中国三大流域为研究区域,分别针对TRMM 3B43和GPM IMERG降水数据,构建基于归一化植被指数(NDVI)和数字高程模型(DEM)数据的地理加权回归(GWR)模型,以2014年夏季(6~8月)数据为例,得到了三大流域1 km分辨率的降尺度降水数据,并进一步通过气象站点数据对降尺度结果进行验证。研究表明:(1)GPM原始数据整体精度优于TRMM数据,两种数据在黄河流域的精度评价指标优于长江流域与珠江流域;(2)经降尺度计算,两种数据空间分辨率得到了显著提高,且表现出更多降水变化的细节与趋势,但精度指标对原始数据依赖性大,导致提升并不显著;(3)当联合使用NDVI及DEM作为GWR降尺度模型的辅助变量时,两种降尺度结果的差异值在长江流域与珠江流域的高海拔地区中更为显著;(4)黄河流域中,使用不同辅助变量下的降尺度结果在空间分布上总体相似。TRMM数据使用地形作为单独辅助变量的降尺度结果最佳,而GPM数据不同辅助变量下降尺度结果差异并不明显。

Abstract: Taking three major river basins in China as the study areas, this study tries to reveal the difference between downscaled results of TRMM 3B43 and GPM IMERG precipitation based on different Geographically Weighted Regression (GWR) models. Normalized Difference Vegetation Index (NDVI) and Digital Elevation Model (DEM) were selected as the basic ancillary variables of GWR models. Different combinations of NDVI and DEM were employed to downscale TRMM and GPM precipitation of 2014 summer, which were then evaluated based on rain gauge observations. The results demonstrate that, (1) Overall accuracy of the original GPM precipitation data is better than TRMM. Accuracy indices imply that both data have higher accuracy in the Yellow River Basin than in the Yangtze River Basin and the Pearl River Basin. (2) After downscaling, the spatial resolutions of both precipitation data have been significantly improved. The downscaled results demonstrate more details and trends of precipitation variation, but their accuracy is more dependent on the original data, which makes the accuracy improvement not significant. (3) Using GWR model with both NDVI and DEM as ancillary variables, difference between downscaled results of TRMM and GPM is significant in high altitude areas of the Yangtze River Basin and Pearl River Basin. (4) The downscaled results with different auxiliary variables in the Yellow River Basin are generally similar in spatial distribution. Downscaling TRMM using terrain as the only auxiliary variable generates the best results, while for GPM, GWR models with different auxiliary variables show no obvious difference.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[2] 张林, 王礼茂, 王睿博,. 长江中上游防护林体系森林植被碳贮量及固碳潜力估算[J]. 长江流域资源与环境, 2009, 18(2): 111 .
[3] 胡振鹏, 葛, 刚, 刘成林, 陈伏生, 李, 述. 鄱阳湖湿地植物生态系统结构及湖水位对其影响研究[J]. 长江流域资源与环境, 2010, 19(06): 597 .
[4] 刘耀彬|戴 璐|张桂波. 水环境胁迫下的环鄱阳湖区城市化格局响应[J]. 长江流域资源与环境, 2014, 23(01): 81 .
[5] 叶磊, 周建中, 曾小凡, 张海荣, 卢鹏. 气候变化下SPEI指数在嘉陵江流域的干旱评估应用[J]. 长江流域资源与环境, 2015, 24(06): 943 -948 .
[6] 胡小飞, 傅春, 陈伏生, 杨丽. 基于水足迹的区域生态补偿标准及时空格局研究[J]. 长江流域资源与环境, 2016, 25(09): 1430 -1437 .
[7] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[8] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[9] 芦鑫, 殷淑燕, 王水霞, 高涛涛. 秦岭南北地区农业气候资源时空变化特征[J]. 长江流域资源与环境, 2018, 27(08): 1866 .
[10] 孙传谆 甄霖 刘小玲 吴顺辉 李景刚 刘通. 小尺度上蜜蜂传粉服务与耕地利用集约水平之间权衡关系研究[J]. 长江流域资源与环境, , (): 0 .