长江流域资源与环境 >> 2021, Vol. 30 >> Issue (8): 1927-1937.doi: 10.11870/cjlyzyyhj202108014

• 生态环境 • 上一篇    下一篇

基于多模式的乌江流域径流对气候变化的响应研究

陈梓延1,王艳君1* , 苏布达2,3,黄金龙1,姜彤1,3   

  1. (1.南京信息工程大学地理科学学院/灾害风险管理研究院,江苏 南京 210044;
    2. 中国气象局国家气候中心,北京 100081; 3. 中国科学院新疆生态与地理研究所,
    荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011)
  • 出版日期:2021-08-20 发布日期:2021-09-06

Research on the Response of Runoff to Climate Change in Wujiang River Basin Based on Multi-model

CHEN Zi-yan 1, WANG Yan-jun 1, SU Bu-da 2,3, HUANG Jin-long 1, JIANG Tong 1,3   

  1. (1. Institute for Disaster Risk Management/School of Geographical Sciences, Nanjing University of Information Science &
    Technology, Nanjing 210044, China; 2. National Climate Centre, Beijing 100081, China; 3. State Key Laboratory of
    Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China)
  • Online:2021-08-20 Published:2021-09-06

摘要: 采用经统计降尺度与偏差订正的4种全球气候模式(GFDL-ESM2M,HadGEM2-ES,IPSL-CM5A-LR和MIROC5)1861-2005年的历史气候模拟试验和2006~2018年的RCP4.5情景预估资料,驱动SWAT水文模型,分析了1861~2018年乌江流域气候变化特征及其对径流的影响。同时,采用1861~2018年4种全球气候模式在工业革命前控制试验(piControl)数据,对比分析了“自然”和“人为+自然” 强迫下流域气候及径流变化的差异。研究结果表明:(1)1861~2018年乌江流域平均气温呈现显著上升趋势,气温倾向率为0.03℃/10a;降水呈显著下降趋势,降水倾向率为-10.9 mm/10a。流域主要水文控制站武隆站年平均流量呈显著下降趋势,倾向率为-20.8 m 3/s/10a;四季平均流量倾向率分别为-10.8、-46.1、-20.1、-5.9 m 3/s/10a,均呈显著下降趋势;枯水极值流量倾向率为-7.6 m 3/s/10a,丰水极值流量倾向率为-43.5 m 3/s/10a,下降趋势显著。(2)“自然”强迫控制试验下,1861~2018年乌江流域年平均气温无明显变化趋势;降水则为不显著上升趋势,倾向率为1.9 mm/10a;年平均流量呈微弱上升趋势,倾向率为0.1 m 3/s/10a;四季平均流量倾向率分别为-1.1、-18.6、11.0、8.9 m 3/s/10a,春季平均流量不显著下降,夏季显著下降,秋季不显著上升,冬季显著上升;枯水极值流量倾向率为2.5 m 3/s/10a,丰水极值流量为-9.5 m 3/s/10a,变化趋势均不显著。(3)相对“自然”强迫序列,人类活动引起的气候变化导致1861~2018年乌江四季平均流量分别减少7.1%、9.7%、8.7%、11.9%;枯水与丰水极值流量分别下降9.3%和5.0%。

Abstract: Statistical downscaled and bias corrected climatic outputs of four global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5) under historical simulation experiment (1861-2005) and RCP4.5 scenario (2006-2018) are used to drive the SWAT hydrological model to analyze the climate change and its impacts on river runoff in the Wujiang River Basin (WJRB). Meanwhile, pre-industrial control experiment (piControl) for 1861-2018 from four GCMs is also used to compare the differences of climate and streamflow changes in the WJRB under the ‘natural’ forcing and the ‘anthropogenic+natural’ forcing. Following results are reached: (1) according to the multi-model ensemble mean, annual mean temperature in the WJRB for 1861-2018 has shown an significant upward trend with a rate of 0.03℃/10a, and annual precipitation has shown a significant downward trend with rate of -10.9mm/10a. The annual average discharge has shown a significant downward trend with a rate of -20.8 m 3/s/10a. Seasonal average discharge has shown declining trend with rates of -10.8 m 3/s/10a, -46.1 m3/s/10a, -20.1 m3/s/10a, and -5.9 m 3/s/10a, respectively, for spring, summer, autumn and winter. Trends of all seasonal average discharge were statistically significant. Significant decreasing trend was detected with rate of -7.6 m 3/s/10a and -43.5 m 3/s/10a, respectively, for low flow (Q90) and high flow (Q10). (2) Under the ‘nature’ forcing, no obvious trend was detected for annual mean temperature in WJRB for 1861-2018, and an insignificant upward trend was found for annual precipitation with rate of 1.9 mm/10a. The annual average discharge was in a slight positive trend with rate of 0.1 m3/s/10a. Insignificant decrease trend was detected with rate of about -1.1 m 3/s/10a for spring average discharge, while significant one was detected with rate of about -18.6 m 3/s/10a for summer average discharge. Autumn and winter average discharge has shown increasing trend with rate of 11.0 m 3/s/10a and 8.9 m3/s/10a. The trend of autumn average discharge was statistically unsignificant, while winter average discharge was statistically significant Change of extreme discharge was insignificant, and rate of change was 2.5 m 3/s/10a and -9.5 m 3/s/10a, respectively, for low flow and high flow. (3) With relative to the ‘natural’ forcing, seasonal average discharge decreased 7.1%、9.7%、8.7%、11.9% , respectively, for spring, summer, autumn and winter, and decreased 9.3% and 5.0%, respectively, for low flow and high flow for 1861-2018.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 卢德彬 毛婉柳 杨东阳 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, , (): 0 .
[2] 胡继亮 熊自洁 张悦 高婷. 2019年2期自然灾害水平对农户投保意愿的影响分析——基于湖北微观调查数据[J]. 长江流域资源与环境, , (): 0 .
[3] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[4] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[5] 马小亮, 刘桂民, 吴晓东, 徐海燕, 叶琳琳, 张晓兰. 三江源高寒草甸下溪流溶解性有机碳的季节性输移特征[J]. 长江流域资源与环境, 2018, 27(10): 2387 -2394 .
[6] 苏 芳, 郑亚萍, 阚立娜, 蔡 莎. 基于CVM调查法评估城市公共绿地服务价值 ——以西部省会城市为例[J]. 长江流域资源与环境, 2018, 27(11): 2434 -2442 .
[7] 潘超, 周驰, 苗滕, 刘林峰, 高健, 焦一滢, 李祝, 张佳敏, 王卉君, 徐德雄. 长江流域鄂西四河流大型底栖动物群落结构特征及水质生物学评价[J]. 长江流域资源与环境, 2018, 27(11): 2529 -2539 .
[8] 朱立一, 何伟, 朱璧然, . 纳米二氧化硅和铅复合暴露对 斑马鱼幼鱼甲状腺内分泌系统的毒性影响[J]. 长江流域资源与环境, 2018, 27(11): 2588 -2596 .
[9] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[10] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .