长江流域资源与环境 >> 2022, Vol. 31 >> Issue (1): 73-82.doi: 10.11870/cjlyzyyhj202201007

• 自然资源 • 上一篇    下一篇

汉江流域产水量时空格局及影响因素研究

胡砚霞1,2,于兴修1,2*,廖  雯1,刘璇璇1   

  1. (1.湖北大学区域开发与环境响应湖北省重点实验室,湖北 武汉 430062;2.湖北省农业遥感应用工程技术研究中心,湖北 武汉 430062)
  • 出版日期:2022-01-20 发布日期:2022-02-09

Spatio-Temporal Patterns of Water Yield and Its Influencing Factors in the Han River Basin

HU Yan-xia1,2, YU Xing-xiu1,2, LIAO Wen1, LIU Xuan-xuan1   

  1. (1. Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China;2. Hubei Engineering Research Center for Remote Sensing Technology in Agriculture, Wuhan 430062, China)
  • Online:2022-01-20 Published:2022-02-09

摘要: 汉江流域是南水北调中线工程重要的水源涵养区和生态屏障区,研究其生态系统产水服务功能的时空变化及影响因素对实现汉江流域高质量持续调水和生态环境保护具有重要意义。基于Google Earth Engine云平台多源异构数据以及气象、土壤等资料作为输入,采用InVEST模型产水模块和情景分析法估算和阐明了2001~2019年汉江流域产水量及其时空变化特征,并探讨了降水和土地利用变化对汉江流域产水量的影响。结果表明:(1)2001~2019年,汉江流域产水量先增加后减少,不同时期流域产水深度空间格局基本一致,呈中北部低、西南部及东南部高的空间分异特征;全流域产水深度以增加为主,增加区域集中于丹江口以上流域,减少区域主要在唐白河流域。(2)子流域尺度上,丹江口以上流域对全流域产水量的贡献最高,是汉江流域主要产水区,唐白河流域的贡献最低。(3)城镇与建成区、裸地和草地平均产水深度最大;稀疏森林、农田和郁闭森林是流域产水的主要贡献地类,三者提供了汉江流域产水总量的90%;平原区产水深度最高,较低中山区产水深度最低。(4)2001~2019年,降水变化和土地利用变化对产水量变化的贡献率分别为94%和6%,表明降水变化对产水量的影响更显著,土地利用变化的影响较小。研究结果可为汉江流域科学合理推进退耕还林(草)工程、水源地生态环境可持续发展提供科学依据。

Abstract: The Han River Basin is an important water-supporting area and ecological barrier region for the middle route of the South-to-North Water Diversion Project. It is of great significance to study the spatial and temporal variation of its water production service and the influencing factors to achieve high-quality water transfer and ecological environment protection in the Han River Basin. Based on multi-source heterogeneous data derived from Google Earth Engine cloud platform, meteorological and soil information, this study applied the water production module of the InVEST model and scenario analysis method to estimate and elucidate spatial and temporal characteristics of water yield in the Han River Basin from 2001 to 2019. The influence of precipitation change and land use change on water yield in the Han River Basin was explored as well. Firstly, water yield in the Han River Basin first increased and then decreased from 2001 to 2019, and the spatial differentiation characteristic of water yield was basically the same in different periods, showing a spatial divergence of low in the north-central part and high in the southwest and southeast. Water yield mainly increased in the whole basin, with the increase concentrated in the watershed above Danjiangkou and the decrease primarily in the Tangbai River watershed. Secondly, at the sub-basin scale, the watershed above Danjiangkou makes the highest contribution to water yield in the entire basin and is the main water-producing area in the Han River Basin, while the Tangbai River watershed makes the lowest contribution. Thirdly, built-up lands, barren lands and herbaceous vegetation have the highest average water yield; open forests, croplands and dense forests are the major types of land contributing to water production in the Han River Basin, with all three providing 90% of the total water yield. Besides, plains have the highest average water yield, and lower-middle mountainous areas have the lowest. Furthermore, contribution rates of precipitation change and land use change to water yield change from 2001 to 2019 were 94% and 6%, respectively, indicating that precipitation change had a more significant impact on water yield and land use change had a smaller influence. Research results can provide scientific reference for the promotion of conversion of farmland to forest (grass) project and the sustainable development of the ecological environment of water source areas in the Han River Basin.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[4] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .
[5] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[6] 刘晓阳 黄晓东 丁志伟. 长江经济带县域信息化水平的空间差异研究[J]. 长江流域资源与环境, , (): 0 .
[7] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[8] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[9] 秦欢欢 孙占学 高柏. 农业节水和南水北调对华北平原可持续水管理的影响[J]. 长江流域资源与环境, , (): 0 .
[10] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .