长江流域资源与环境 >> 2022, Vol. 31 >> Issue (1): 156-165.doi: 10.11870/cjlyzyyhj202201015

• 生态环境 • 上一篇    下一篇

水位波动下火烧干扰对南荻土壤碳组分、微生物固碳能力的影响

江玉梅1,卢鹏伟1,张志斌1,简敏菲1,朱笃1,2*   

  1. (1. 江西省亚热带植物资源保护与利用重点实验室,江西师范大学生命科学学院,江西 南昌 330022;2. 江西省生物加工过程重点实验室,江西科技师范大学生命科学学院,江西 南昌 330038)
  • 出版日期:2022-01-20 发布日期:2022-02-09

Effects of Fire Disturbance on Soil Carbon Components and Microbial  Carbon Sequestration Capacity at Nanji Mountain Under Water Level Fluctuation

JIANG Yu-mei1,LU Peng-wei1,ZHANG Zhi-bin1,JIAN Min-fei1,ZHU Du1,2   

  1. (1 .Key Laboratory of Protection and Utilization of Subtropical Plant Resources of Jiangxi Province, College of Life Sciences,
     Jiangxi Normal University, Nanchang 330022, China;2. Key Laboratory of Bioprocess Engineering of Jiangxi Province, 
    College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330038, China)
  • Online:2022-01-20 Published:2022-02-09

摘要: 火烧对湿地生态系统的影响是国内外火生态学和湿地生态系统研究中的一个热点,而水位波动下,火烧对鄱阳湖湿地南荻土壤碳组分及微生物固碳潜力的影响仍不是很清楚。因此,选择火烧后的南荻土壤为研究对象,分别从火烧后的第三天2015年1月18日(枯水期)、2015年4月12日(涨水期)和2015年11月10日(退水期)3个水位时期,各采集0~10 cm表层土壤,对比分析火烧和未火烧南荻土壤碳组分(微生物生物量碳、可溶性有机碳和易氧化活性有机碳)、微生物固碳潜力(土壤RubisCO酶活和固碳功能基因cbbL丰度)的差异,以期阐明水位波动下火烧干扰对土壤碳库及微生物固碳能力的影响。结果表明,枯水期火烧干扰土壤中易氧化活性有机碳含量(4.12±0.30 mg/g)显著低于未火烧的土壤(16.14±0.17 mg/g)(p<0.05),土壤微生物生物量碳含量(2 359±535 mg/kg)和cbbL基因拷贝数(1.68±0.17×105 copies/g)显著高于未火烧的土壤(1 095±110 mg/kg 和 4.61±3.12×104 copies/g)(p<0.05),而土壤中的可溶性有机碳和土壤RubisCO酶活没有显著差异(p>0.05)。在随后的涨水期和退水期,火烧和未火烧对土壤碳组分、cbbL基因拷贝数、RubisCO酶活影响无显著差异。另外,从3个水位时期来分析,火烧后水位时期对土壤微生物生物量碳和可溶性有机碳含量影响显著(p<0.05),且表现为枯水期 > 涨水期 > 平水期。相关性分析结果表明,土壤温度和土壤碳组分显著负相关,cbbL基因丰度和碳组分含量为负相关关系,土壤碳组分(易氧化活性有机碳、可溶性有机碳)和土壤呼吸和羧化酶活性的关系表现为正相关。说明土壤温度升高,不利于土壤有机碳的积累;另外,土壤羧化酶活性的提高,有助于微生物同化CO2,从而提高土壤有机碳组分含量。

Abstract: The influence of fire on wetland ecosystem is a hot topic in the study of the fire ecology and wetland ecosystem at home and abroad. However, the effect of fire on soil carbon components and microbial carbon sequenstration potential in Poyang Lake under water level fluctuation is still not clear. This paper chose the burned (January 15) and unburned area with plant Triarrhena lutarioriparia as the experiment plots, located in the Wetland Natural Preservation Zone at Changhu chi of the Poyang Lake, and 0-10 cm depth soils was sampled at January 18, April 12, and Novermber 10, 2015, to analyze the soil carbon components, soil enzymes and soil bacterial and carbon-fixing microbe activities. Results showed that fire interference had important effects on soil carbon and nitrogen content, soil enzyme activity and different carbon components. For the first sampling time (January 18, 2015), the burned soil easy oxidation active organic carbon content (4.12 ± 0.30 mg/g) was significantly lower than that of unburned soils (16.14±0.17 mg/g) (p < 0.05), and the burned soil microbial biomass carbon (2 359±535 mg/kg) and cbbL gene copies(1.68±0.17×105 copies/g)is significantly higher than those (1 095±110 mg/kg and 4.61±3.12×104 copies/g) (n=3, p < 0.05) of unburned soil, but there was no significant difference in the content of soil soluble organic carbon, soil respiration and soil RubisCO activity (p > 0.05). There was no significant difference in the content of different carbon components, cbbL gene copies, and RubisCO enzyme activity for burned and unburned soils at the next two sample times (April 12 and November 10, 2015). While, the soil microbial biomass C and soluble organic carbon were significantly different during water level fluctuation with a trend from dry, flood to normal water level. Correlation analysis showed that the soil temperature, 16srRNA and cbbL gene copies were negatively significant related to the soil carbon components. The soil easy oxidation active organic carbon and soluble organic carbon were positively related to soil respiration and RubisCO enzyme activity. So the increase of soil temperature was not conducive to the accumulation of soil organic carbon. In addition, the increase of soil carboxylase activity is conducive to the assimilation of CO2 by microorganisms, thus increasing the content of soil organic carbon components.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[2] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[3] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[4] 杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(08): 1836 .
[5] 李恩康, 陆玉麒, 王 毅, 黄群芳, 郭 政. 城镇化对制度转型的影响——基于江苏13个市的脉冲响应函数分析[J]. 长江流域资源与环境, 2018, 27(09): 1919 -1927 .
[6] 魏国恩, 朱 翔, 贺清云. 环长株潭城市群空间联系演变特征与对策研究[J]. 长江流域资源与环境, 2018, 27(09): 1958 -1967 .
[7] 啜明英, 马骏, 刘德富, 杨正健. 整流幕对香溪河库湾水温特性影响数值模拟[J]. 长江流域资源与环境, 2018, 27(09): 2101 -2113 .
[8] 朱寅健. (新)环鄱阳湖区域交通网络通达性与旅游一体化发展[J]. 长江流域资源与环境, , (): 0 .
[9] 田 鹏, 李加林, 史小丽, 王丽佳, 刘瑞清. 浙江省土地利用格局时空变化及生态风险评价[J]. 长江流域资源与环境, 2018, 27(12): 2697 -2706 .
[10] 危小建, 陈竹安, 张 蕾, 江 平, 吴 芳, . 引入城市扩张干扰效应的生态服务价值化方法改进[J]. 长江流域资源与环境, 2019, 28(01): 30 -38 .