长江流域资源与环境 >> 2022, Vol. 31 >> Issue (5): 960-971.doi: 10.11870/cjlyzyyhj202205002

• 区域可持续发展 • 上一篇    下一篇

长三角生物医药产业创新网络结构及其影响因素

马  菁1,2,3,曾  刚1,2,3*,胡森林1,2,3,孙  康1,2   

  1. (1.华东师范大学中国现代城市研究中心,上海200062;2.华东师范大学城市与区域科学学院,上海200062;3.华东师范大学城市发展研究院,上海200062)
  • 出版日期:2022-05-20 发布日期:2022-06-01

Innovation Network Structure of Biomedical Industry and Its Influencing Factors in Yangtze River Delta

MA Jing1,2,3, ZENG Gang1,2,3, HU Sen-lin1,2,3, SUN Kang1,2   

  1. (1.Center for Modern Chinese City Studies & School of City and Regional Science, East China Normal University, Shanghai 200062, China; 2. School of Urban & Regional Sciences, East China Normal University, Shanghai 200062, China;3. School of Urban Development Research East China Normal University, Shanghai 200062, China)
  • Online:2022-05-20 Published:2022-06-01

摘要: 基于2001~2018年长三角地区生物医药产业合作申请专利数据,采用社会网络分析方法,对长三角地区城市间创新网络的空间结构进行探究,并借助面板负二项固定效应模型对网络结构的影响机制进行分析。研究发现:长三角生物医药产业创新网络呈现简单到复杂、低级到高级的演化过程;在地理空间上呈现以上海为中心的放射状结构,创新网络密度呈现东高西低的态势,创新节点和创新联系主要集中于长三角东侧。长三角地区城市间生物医药产业创新网络的构建,不仅受到其自身经济发展水平、产业结构、外商投资和地理邻近性等因素的影响,也会受到城市内部创新网络密度的影响,且城市在全国创新网络中的地位也会对区域内城市间创新合作的构建产生正向效应。

Abstract: Based on the data of biomedical industry cooperation patent applications in the Yangtze River Delta region from 2001 to 2018, using social network analysis methods to explore the spatial structure of the innovation network between cities in the Yangtze River Delta region, and using the panel negative binomial fixed effect model to analyze the influence mechanism of the network structure. The research found that: the biomedical industry innovation network in Yangtze River Delta presents a simple to complex, low-level to high-level evolution process; a radial structure with Shanghai as the center is presented in geographic space, and the density of the innovation network is high in the east and low in the west. Innovation nodes and innovations Contacts are mainly concentrated on the east side of the Yangtze River Delta. The construction of the biomedical industry innovation network between cities in the Yangtze River Delta is not only affected by its own economic development level, industrial structure, foreign investment and geographic proximity, but also by the density of the innovation network within the city, and the status of cities in the national biomedical industry innovation network will also have a positive effect on the construction of innovation cooperation between cities in the region. At the end of the paper, in view of the practical problems existing in the development of biomedical innovation in the Yangtze River Delta, such as the core-edge structure, the lack of cross-regional cooperation and homogeneous competition, this paper puts forward targeted policy suggestions.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁博, 郭梦京, 周孝德, 郑兴. 气候变化及人类活动对河流溶解性有机质(DOM)影响的研究进展[J]. 长江流域资源与环境, 2018, 27(07): 1440 .
[2] 张路路, 郑新奇, 蔡玉梅.  基于投影寻踪模型的湖南省土地多功能时空演变分析[J]. 长江流域资源与环境, 2018, 27(08): 1754 .
[3] 廖炜, 李璐, 杨伟, 吴宜进. 城镇化过程中的流域面源污染时空变化[J]. 长江流域资源与环境, 2018, 27(08): 1776 .
[4] 奚世军 安裕伦 李阳兵 蔡沛伶 李瑞 龙立美 陈啟英. 基于景观格局的喀斯特山区流域生态风险评估 ——以贵州省乌江流域为例[J]. 长江流域资源与环境, , (): 0 .
[5] 张亚飞 廖和平 李义龙. 基于反规划与FLUS模型的城市增长边界划定研究——以重庆市渝北区为例[J]. 长江流域资源与环境, , (): 0 .
[6] 王先甲 秦颖 杨文俊 袁睢秋. 湖库泥沙资源化多目标优化配置研究综述[J]. 长江流域资源与环境, , (): 0 .
[7] 秦立 吴起鑫. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, , (): 0 .
[8] 刘晋高, 诸葛亦斯, 刘德富, 张佳磊, 马骏, 余晓.  

防控三峡水库支流水华的生态约束型优化调度 [J]. 长江流域资源与环境, 2018, 27(10): 2379 .

[9] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505 -2517 .
[10] 袁凯华, 张 苗, 甘臣林, 陈银蓉, 朱庆莹, 杨慧琳. 基于碳减排目标的省域碳生态补偿研究[J]. 长江流域资源与环境, 2019, 28(01): 21 -29 .