长江流域资源与环境 >> 2023, Vol. 32 >> Issue (7): 1335-1348.doi: 10.11870/cjlyzyyhj202307001

• 区域可持续发展 •    下一篇

长三角地区城市绿色创新效率网络空间结构演化及影响因素

滕堂伟1,2,潘雅君1,2*,王胜鹏1,2,鲍涵1,2   

  1. (1.华东师范大学中国现代城市研究中心,上海 200062;2.华东师范大学国土开发与区域经济研究所,上海 200241)
  • 出版日期:2023-07-20 发布日期:2023-07-21

Evolution and Driving Factors of Spatial Network Structure of Green Innovation Efficiency in Yangtze River Delta

TENG Tang-wei1,2, PAN Ya-jun1,2, WANG Sheng-peng1,2, BAO Han1,2   

  1. (1.The Center for Modern Chinese City Studies, East China Normal University, Shanghai 200062, China; 2.Institue of Territorial of Development and Regional Econeomy & Regional Science, East China Normal University, Shanghai 200241, China)
  • Online:2023-07-20 Published:2023-07-21

摘要: 绿色创新在推进长三角更高质量一体化发展中具有关键作用。应用包含非期望产出的Super-SBM DEA模型测算了2011~2019年长三角地区41个地级及以上城市的绿色创新效率,通过引力模型构建了城市间的绿色创新效率关联矩阵,利用社会网络分析方法探讨了绿色创新效率空间关联关系、网络结构特征及其影响因素。研究表明:(1)长三角地区城市绿色创新效率总体呈波动上升态势,但区域异质性明显,呈南高北低的分布格局;(2)区域内形成了整体结网复杂、局部线程稠密的绿色创新效率空间关联网络。上海等中心城市的“虹吸效应”明显,而溢出效应有待提升;(3)长三角地区城市绿色创新效率网络呈现出明显的“核心—边缘”结构,核心区范围未发生明显偏移,基本呈“大集聚、小分散”分布态势;(4)技术基础、产业结构、环境质量的差异以及地理距离等因素成为影响长三角地区城市绿色创新效率网络空间结构的重要因素。

Abstract:  As an effective method for  achieving sustainable development, green innovation plays a key role in promoting regional integration and high-quality development in the Yangtze River Delta region.Using the Super-SBM DEA model of undesirable outputs to measure the green innovation efficiency of 41 cities in the Yangtze River Delta from 2011 to 2019, and constructing the correlation matrix of green innovation efficiency among cities by gravity model, this paper discusses the spatial correlation, network structure characteristics and driving factors of green innovation efficiency by applying social network analysis method.The results show that: (1)The efficiency of urban green innovation in the Yangtze River Delta is basically fluctuated and increased.There is obvious regional heterogeneity in efficiency, and the distribution pattern is high in the south but low in the north.(2)The spatial association network of green innovation efficiency in the region is complex and the local associations of some cities are strong.In some regional central cities, such as Shanghai, the effect of syphon aspect is obvious, while the spillover effect needs to be improved.(3)The efficiency network presents an obvious core-edge structure.The core area is mainly concentrated in Shanghai, other provincial capitals and surrounding cities, which basically presents a trend distribution with “most concentrated, a few dispersed”.(4)The differences in patent output and industrial structure have a significant positive effect on the spatial correlation intensity of green innovation efficiency among cities.The differences in environmental quality and geographical distance have negative effects on the spatial correlation of green innovation efficiency among cities.These factors become important factors affecting the spatial network structure of urban green innovation efficiency in the Yangtze River Delta.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 奚世军 安裕伦 李阳兵 蔡沛伶 李瑞 龙立美 陈啟英. 基于景观格局的喀斯特山区流域生态风险评估 ——以贵州省乌江流域为例[J]. 长江流域资源与环境, , (): 0 .
[4] 张亚飞 廖和平 李义龙. 基于反规划与FLUS模型的城市增长边界划定研究——以重庆市渝北区为例[J]. 长江流域资源与环境, , (): 0 .
[5] 秦立 吴起鑫. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, , (): 0 .
[6] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[7] 袁凯华, 张 苗, 甘臣林, 陈银蓉, 朱庆莹, 杨慧琳. 基于碳减排目标的省域碳生态补偿研究[J]. 长江流域资源与环境, 2019, 28(01): 21 -29 .
[8] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[9] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[10] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .