长江流域资源与环境 >> 2023, Vol. 32 >> Issue (9): 1971-1980.doi: 10.11870/cjlyzyyhj202309017

• 农业发展 • 上一篇    下一篇

稻渔共作模式碳足迹评价及减排对策分析

戴林秀,徐强*,彭翔,李京咏,周影,黄佳敏,敖弟彩,窦志,高辉
  

  1. (江苏省作物栽培生理重点实验室 / 江苏省作物遗传生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学农学院 / 水稻产业工程技术研究院,江苏 扬州 225009)
  • 出版日期:2023-09-20 发布日期:2023-09-22

Carbon Footprint Evaluation and Emission Reduction Strategy of Rice-Fish co-culture

DAI Lin-xiu, XU Qiang, PENG Xiang, LI Jing-yong, ZHOU Ying, HUANG Jia-min, AO Di-cai, DOU Zhi, GAO Hui   

  1. (Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Key Laboratory of Crop Genetics and Physiology /
     Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / College of Agriculture, Yangzhou University / Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China)
  • Online:2023-09-20 Published:2023-09-22

摘要: 稻渔共作是中国稻区重要的生态农业发展模式,对该模式进行系统全面的碳足迹评价有助于稻田综合种养产业的低碳绿色发展。研究基于田间试验数据,利用生命周期评价法评价了水稻单作、稻鳅共作和稻鲶共作3种稻作模式的单位面积碳足迹(CFA)、单位产值碳足迹(CFV)、单位利润碳足迹(CFP)和单位营养密度碳足迹(CFNDU),并在此基础上进行了情景分析。结果表明:稻鳅共作的CFA、CFV、CFP和CFNDU分别为11 923 kg CO2 -eq·hm-2、0.10 kg CO2 -eq·¥-1、0.14 kg CO2 -eq·¥-1和1.37 kg CO2 -eq·NDU-1,比水稻单作降低了17.5%、82.1%、79.1%和77.7%;稻鲶共作的CFA、CFV、CFP和CFNDU分别为12 110 kg CO2 -eq·hm-2、0.16 kg CO2-eq·¥-1、0.22 kg CO2 -eq·¥-1和2.48 kg CO2 -eq·NDU-1,比水稻单作降低了16.2%、71.4%、67.2%和59.7%。综合来看,稻鳅共作以最低的碳排放为人们提供了最高的营养密度并创造了最高的经济效益,最值得推广。敏感性分析表明CH4排放、灌溉耗电和水产动物饲料对碳足迹影响较大。情景分析表明,当综合使用光伏发电、水稻新品种和提高饲料利用效率时,两种稻渔共作模式的单位面积碳减排潜力可达到23.4%~24.4%。研究从碳排放的角度为中国传统稻作模式向生态稻作模式转型提供了理论依据。


Abstract: Rice-fish co-culture is an important ecological agriculture development mode in China's rice farming region.A systematic and comprehensive carbon footprint evaluation of this mode is helpful for the low-carbon and green development of the rice-fish co-culture. Previous studies showed that rice-loach co-culture and rice-catfish co-culture could significantly improve the rice quality and increase farmers' income. However, no research on the carbon footprint of these two modes has been reported. Based on field experimental data, the study used life cycle assessment to evaluate carbon footprints per hectare (CFA), per output value (CFV), per profit (CFP), and per NDU (CFNDU) of the rice monoculture, rice-loach co-culture, and rice-catfish co-culture. A sensitivity analysis was performed to identify parameters that had greater impacts on the carbon footprint assessment results of the rice-fish co-culture. At last, a scenario analysis aiming to explore potential mitigation was carried out.Results showed that CFA, CFV,CFP and CFNDU of the rice-loach co-culture was 11 923 kg CO2 -eq·hm-2,0.10 kg CO2 -eq·¥-1,0.14 kg CO2 -eq·¥-1,and 1.37 kg CO2 -eq·NDU-1 respectively, which was reduced by 17.5%,82.1%, 79.1%, and 77.7% compared with those of rice monoculture. The CFA, CFV,CFP and CFNDU of rice-catfish co-culture was 12 110 kg CO2 -eq·hm-2,0.16 kg CO2 -eq·¥-1,0.22 kg CO2 -eq·¥-1,and 2.48 kg CO2 -eq·NDU-1 respectively, which was reduced by 16.2%,71.4%,67.2%, and 59.7% compared with those of rice monoculture. In general, rice-loach co-culture delivered the highest nutrient outputs and created the highest economic benefit with the lowest carbon emission, which is most worthy of promotion. Scenario analysis showed that, integrated adopting of photovoltaic power generation, new rice varieties, and improvement of feed utilization efficiency could reduce the carbon footprint by 23.4%-24.4% of the two rice-fish co-culture modes.This study provided theoretical basis for the conversion from traditional to ecological rice cultivation in China, from the perspective of carbon emission.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[2] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[3] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[4] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[5] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[6] 魏国恩, 朱 翔, 贺清云. 环长株潭城市群空间联系演变特征与对策研究[J]. 长江流域资源与环境, 2018, 27(09): 1958 -1967 .
[7] 马坤, 唐晓岚, 刘思源, 王奕文, 任宇杰, 刘小涵. 长江流域国家级保护地空间分布特征及其国家公园廊道空间策略研究[J]. 长江流域资源与环境, 2018, 27(09): 2053 -2069 .
[8] 啜明英, 马骏, 刘德富, 杨正健. 整流幕对香溪河库湾水温特性影响数值模拟[J]. 长江流域资源与环境, 2018, 27(09): 2101 -2113 .
[9] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[10] 朱寅健. (新)环鄱阳湖区域交通网络通达性与旅游一体化发展[J]. 长江流域资源与环境, , (): 0 .