长江流域资源与环境 >> 2023, Vol. 32 >> Issue (12): 2492-2503.doi: 10.11870/cjlyzyyhj202312004

• 区域可持续发展 • 上一篇    下一篇

外部性视角下县域经济空间网络对生态效率的影响研究 ——以江苏省为例

张新林1,仇方道2*   

  1. (1.江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221114;2.江苏第二师范学院地理科学学院,江苏 南京 211200)
  • 出版日期:2023-12-20 发布日期:2023-12-25

Influence of County Economic Spatial Network on Eco-efficiency in Jiangsu Province from Perspective of Externalities

ZHANG Xin-lin1,QIU Fang-dao2   

  1. (1.School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221114, China; 2.College of Geographical Science, Jiangsu Second Normal University, Nanjing 211200,  China)
  • Online:2023-12-20 Published:2023-12-25

摘要: 基于网络外部性,探索区域间经济关联对生态效率的影响,在一定程度上突破了物理边界,可更好地探索经济空间组织模式对资源环境的影响。以江苏省为研究对象,分析县域经济空间网络对生态效率的影响,得到结论:(1)县域生态效率呈现出波动增加趋势,并呈现 “南高北低”的地带性差异特征,市辖区生态效率整体较高;(2)县域经济空间关联日趋密切,连通性、可达性、稳定性不断增强,但空间关联关系及互动水平仍然相对较弱,点度中心度、接近中心度和中介中心度均呈现出南高北低的空间分布特征;(3)网络密度和网络关联度的增加、平均路径长度和网络效率的降低均能够有效地促进生态效率的提高,点度中心度有利于本县域及整体生态效率提升,接近中心度有利于本县域生态效率提升,而阻碍其它县域及整体生态效率提升,中介中心度有利于本县域、其它县域及整体生态效率提升,县域经济空间网络对生态效率的影响主要源于县域经济空间网络外部性所带来的空间溢出效应。

Abstract: The contradiction between China’s economic development and the protection of natural resources and the environment remains prominent. Reducing the damage and impact of economic activities on the natural resources and the environment through the scientific optimization of the organization structure and spatial layout of human activities is an important research topic in geography.Based on network externalities, this study focused on inter-regional economic correlations and their impact on the resources and environmental pressures, and explored the internal formation mechanism to break through physical boundaries. This study aimed to better understand the impact of spatial organization modes on resource use and environmental pressure. This paper examined the connection between county-level economic spatial networks and eco-efficiency exemplified in Jiangsu Province. The findings were as follows: (1) County-level eco-efficiency demonstrated fluctuations with an upward trend and showed zone differences, with higher eco-efficiency levels in municipal districts than other counties. (2)Spatial correlations among the county’s economy became increasingly tight, while connectivity, accessibility, and stability were continuously improved. However, the spatial correlation and interaction level remained weak. The spatial distribution characteristics indicated that point degree centrality, proximity centrality, and intermediate centrality were higher in the south and lower in the north, with an increase in mean value and range over time. (3) It was found that increases in network density and correlation degree, and decreases in average path length and network efficiency could improve overall ecological efficiency. Point centrality degree might promote local county and overall ecological efficiency. Proximity to the center could enhance local ecological efficiency but might hinder improvements in other counties and overall ecological efficiency. Meanwhile, intermediate centrality could raise the ecological efficiency of the local county, other counties, and the entire region. The impact of the county economic spatial network on eco-efficiency mainly came from the spillover effects in the network externality of the county economic spatial network. This study demonstrated the close relationship between county-level economic spatial networks and eco-efficiency. The economic spatial networks affected ecological efficiency through the attributes of nodes and edges. The centrality and externality of economic spatial networks jointly influenced eco- efficiency. Based on the findings of this study, relevant policy recommendations were proposed.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[4] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[5] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[6] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[7] 康婷婷, 徐 欢, 张春华, 胡召玲. 区域尺度农田最大光能利用率参数估算及时空变化分析[J]. 长江流域资源与环境, 2018, 27(12): 2766 -2774 .
[8] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[9] 钟业喜, 郭卫东, 毛炜圣, 王晓静, 冯兴华. 闽新轴带城市铁路网络及可达性演变研究[J]. 长江流域资源与环境, 2019, 28(05): 1015 -1024 .
[10] 葛云健, 吴笑涵. 江苏历史时期洪涝灾害时空分布特征[J]. 长江流域资源与环境, 2019, 28(08): 1998 -2007 .