长江流域资源与环境 >> 2025, Vol. 34 >> Issue (11): 2541-.doi: 10.11870/cjlyzyyhj202511013

• 生态环境 • 上一篇    下一篇

2001~2023年湖北省植被覆盖指数时空变化特征及影响因素

张媛1,孙昆2,柯鹏振3,杨晨4,於少平5,刘海4,熊晶1   

  1. (1. 湖北省生态环境监测中心站,湖北 武汉 430071; 2.中国科学院地理科学与资源研究所,北京 100101;3.湖北省生态环境厅咸宁生态环境监测中心,湖北 咸宁 437100;4.湖北大学资源环境学院,湖北 武汉 430062;5. 武汉珞珈新图科技有限公司,湖北 武汉430079)
  • 出版日期:2025-11-20 发布日期:2025-11-20

Spatio-temporal Changes and Influencing Factors of Vegetation Coverage Index in Hubei Province (2001 to 2023)

ZHANG Yuan1,SUN Kun2,KE Peng-zhen3,YANG Chen4,YU Shao-ping5,LIU Hai4,XIONG Jiong1   

  1. (1. Ecology Environment Monitoring Center of Hubei Province, Wuhan 430071, China; 2.Institute of Geographic Sciences and Natural Resources Research, Beijing 100101,China;3. Xianning Ecology Environment Monitoring Center of Hubei Provincial Department of Ecological Environment , Xianning  437100,China;4.Faculty of Resources and Environmental Science, Hubei University,Wuhan 430062,China;5. Wuhan Luojia Xintu Technology Co., Ltd,Wuhan 430079,China)
  • Online:2025-11-20 Published:2025-11-20

摘要: 基于MODIS NDVI数据,辅以趋势分析、赫斯特指数、变异系数等,探讨了湖北省2001~2023年植被覆盖指数时空变化特征;使用地理探测器,对其驱动因素进行了分析。结果表明:(1)湖北省植被覆盖指数整体较高,全省有66.49%的区域处于较高和高植被覆盖区;空间上,湖北省植被覆盖指数呈“中间低,四周高”的分布特征,高值区主要集中在湖北省四个生态屏障区域,低值区域主要集中在武汉市及周边城市群。(2)时序上,2001~2023年湖北省植被覆盖指数呈极显著增加趋势,增速为0.32/年,2001~2007年为快速增长阶段(增速为1.10/年),2008年以后平稳上升(增速仅为0.23/年);(3)湖北省植被覆盖指数呈显著增加趋势的面积占比约为69.29%,主要分布在鄂西和鄂东区域;无显著变化的区域面积占比约25.93%,主要分布在江汉平原区域;显著减少的面积仅占4.78%,主要分布在沙洋县、潜江市和汉川市;从变化程度上看,低波动和相对低波动区域面积占比达83.77%,主要分布在鄂西和鄂东区域,相对高波动和高波动区面积占比仅2.34%。(4)湖北省植被变化的同向特征要略强于反同向特征,但强同向特征和强反向特征的区域均较少。其中32.69%的区域将持续改善,但30.44%的区域将由改善转为退化。(5)驱动力分析结果表明,土地利用类型是影响湖北省植被指数的主导因子,气温、DEM和人口密度次之,降水量的影响最小,植被类型与植被覆盖指数相关性不显著。随着时间推移,主导因子的影响越来越大。因子交互后对植被覆盖指数的解释力均有所增强,且随着时间的推移因子交互后的解释力也均有所增强。

Abstract: This study explored the spatiotemporal variation characteristics of the vegetation cover index in Hubei Province from 2001 to 2023. The MODIS NDVI data were used. Trend analysis, the Hurst index, and the coefficient of variation were analyzed. Geographic detectors were employed to analyze the driving factors. The findings indicated that: (1) The overall vegetation cover index in Hubei Province was relatively high, with 66.49% of the province classified as high or relatively high vegetation cover. Spatially, the vegetation cover index exhibited a distribution pattern characterized by "low in the middle and high around, high-value areas primarily concentrated in the four ecological barrier regions of Hubei Province, while low-value areas were mainly found in Wuhan City and the surrounding urban agglomeration. (2) Temporally, the vegetation cover index in Hubei Province demonstrated a significant increasing trend from 2001 to 2023, with an annual growth rate of 0.3233. For the period of 2001 to 2007, the vegetation cover experienced a rapid growth (at an annual growth rate of 1.1028), followed by a steady increase after 2008 (at an annual growth rate of 0.2257). (3) Approximately 69.29% of the area in Hubei Province exhibited a significant increasing trend in the vegetation cover index, predominantly located in the western and eastern regions. About 25.93% of the area, mainly in the Jianghan Plain, showed no significant change. Only 4.78% of the area demonstrated a significant decrease, which was located primarily in Shayang County, Qianjiang City, and Hanchuan City. In terms of the degree of change, the areas with low and relatively low fluctuations accounted for 83.77%, which was mainly located in the western and eastern parts of Hubei, while areas with relatively high and high fluctuations constituted only 2.34%. (4) The characteristic of vegetation change in Hubei Province showed a slightly stronger tendency for same-direction changes compared to opposite-direction changes, although there were relatively few areas exhibiting strong characteristics in either direction. Notably, 32.69% of the areas were expected to continue an improvement, while 30.44% were projected to shift from an improvement to a degradation. (5) The analysis of driving forces revealed that land use type was the primary factor influencing the vegetation index, followed by temperature, digital elevation model (DEM), and population density, and precipitation was found to have the least impact. The correlation between vegetation type and the vegetation cover index was not significant. It was found that the influence of these dominant factors increased, and the explanatory power of the interactions among these factors had grown.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[2] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[3] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[4] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[5] 戢晓峰, 刘丁硕. 基于3D理论与SEM的县域交通可达性与空间贫困的耦合机制[J]. 长江流域资源与环境, 2018, 27(07): 1360 .
[6] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[7] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[8] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[9] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[10] 熊美华, 邵科, 赵修江, 朱滨, 史方. 长江中上游圆口铜鱼群体遗传结构研究[J]. 长江流域资源与环境, 2018, 27(07): 1395 .