长江流域资源与环境 >> 2011, Vol. 20 >> Issue (05): 553-.

• 自然资源 • 上一篇    下一篇

基于HJ1A/1B卫星遥感数据的积雪识别方法研究

宋珍,陈晓玲,刘海,田礼乔,吴玮   

  1. (1.武汉大学测绘遥感信息工程国家重点实验室|湖北 武汉 430079;2.江西师范大学鄱阳湖湿地与流域研究教育部重点实验室|江西 南昌330027;3.民政部减灾和应急工程重点实验室|北京 100053)
  • 出版日期:2011-05-20

SNOW COVER EXTRACTION BASED ON THE HJ1A/1B SATELLITE DATA

SONG Zhen1,3, CHEN Xiaoling1,2,3, LIU Hai1,3, TIAN Liqiao1,3, WU Wei3   

  1. (1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University,Wuhan 430079,China;2.Key Lab of Poyang Lake Ecological Environment and Resource Development, Jiangxi Normal University, Nanchang 330022,China;3.Key Laboratory of Disaster Reduction and Emergency Response Engineering of the Ministry of Civil Affairs, Beijing 100053,China)〖JP〗〖WT〗〖JZ)〗〖HJ*3/7〗
  • Online:2011-05-20

摘要:

积雪分布与变化是标示气候变化的敏感因子,采用具有长时间序列的大范围同步获取信息优势的卫星遥感数据进行积雪识别提取,具有重要的理论意义和实际应用价值。针对HJ1A/1B卫星数据,结合积雪遥感监测的理论方法,在分析HJ1A/1B卫星CCD和IRS传感器光谱响应特征的基础上,将应用较广的归一化差分积雪指数(NDSI)引入到HJ1A/1B卫星中,得到了基于CCD和IRS两个传感器数据的HJNDSI积雪识别方法。为避免由幅宽、扫描区域等因素的差异引起的两种不同传感器同时相数据难获取的问题,对HJNDSI方法进行了改进,提出了一种仅利用IRS传感器数据的HJMNDSI积雪识别方法。通过对HJ卫星数据的统计分析,给出了两种方法中的推荐阈值。以西藏普兰为实验区,对上述两种方法得到的结果进行精度评价,结果表明,HJNDSI和HJMNDSI方法提取积雪的精度分别为97.66%和94.92%,均能满足实际应用的需要,但HJMNDSI方法能保证更大的积雪监测范围。

Abstract:

Snow is an important factor in climate change,thus,the extraction of snow cover by Remote Sensing data is of great significance in theory and practice for its advantage of realtime and widerange.Using HJ1A/1B satellite data,combined with the theory of snow remote sensing monitoring,this paper fully analyzed spectral response characteristics of HJ1A/1B satellite data.Then the widely used Normalized Difference Snow Index (NDSI) was introduced to the HJ1A/1B satellite,and a snow cover extraction method HJNDSI which integrated CCD and IRS image was proposed.To avoid the data acquisition problem in the two different sensors caused by the differences of swath width,scanning and other factors,HJNDSI was improved in this paper.Only based on IRS data,an improved extraction method based on the Modified Normalized Difference Snow Index (MNDSI) was put forward.Using multitemporal HJ satellite data,the parameters in the two models were identified.Finally,taking Pulan Xizang as the study area,extraction accuracy of the two results by HJNDSI and HJMNDSI methods was assessed.They were 9766% and 9492%,respectively,and both of them could meet the needs of practical applications.However,HJMNDSI method could guarantee a larger range of snow monitoring in this study.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[10] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .