长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 758-764.doi: 10.11870/cjlyzyyhj201505007
施文涛, 谢昕云, 刘西军, 张驰, 柯立, 徐小牛
SHI Wen-tao, XIE Xin-yun, LIU Xi-jun, ZHANG Chi, KE Li, XU Xiao-niu
摘要: 根据杉木人工林年龄(10、22、45、48和50年生)梯度, 在安徽大别山海拔较高山地调查了23块20 m×20 m的样地, 采集18株不同径阶和树高的标准木, 进行了生物量测定。利用7种常用的分别以D、D2、DH和D2H为自变量的生物量模型对其进行拟合, 得到35个生物量估算模型。结果显示, 幂函数模型的拟合效果较好, 多项式模型效果较差, 从中优选出5个最优模型, 枝、干、根和全株的最优模型是W=aDb形式的幂函数模型, 叶的最优模型是W=a+bD2+cD4形式的多项式模型。杉木不同器官的碳含量变化范围在46.64%~53.13%, 过熟林(45~50年生)杉木不同器官的碳含量按高低排列均为树皮 > 树根 > 树叶 > 树枝 > 树干, 根系碳含量高于地上部枝叶的碳含量, 而中幼林龄(10和22年生)杉木地下部分树根的碳含量明显低于地上部分。碳贮量在不同器官中的分配, 10和22年生的高低排序为树干 > 树枝 > 树根 > 树叶, 过熟林杉木的高低排序为树干 > 树根 > 树枝 > 树叶。不同林龄杉木林生物量碳贮量分别为10年生59.39、22年生59.55、45年生136.92、48年生201.25和50年生134.60 Mg C/hm2。不同林龄的杉木林根系生物量碳贮量比例为14.84%~23.79%, 随林龄的增长而提高。研究结果显示较高海拔的立地环境促进了杉木林地下根系生物量积累, 这种生物量分配可能对土壤有机碳蓄积产生重要影响。
中图分类号:
[1] 李育才.面向21世纪的林业发展战略[M].北京:中国林业出版社, 1996. [2] 俞月凤, 宋同清, 曾馥平, 等.杉木人工林生物量及其分配的动态变化[J].生态学杂志, 2013, 32(7):1660-1666. [3] 叶镜中, 姜志林, 周本琳, 等.福建省洋口林场杉木林生物量的年变化动态[J].南京林学院学报, 1984, (4):1-9. [4] 周国模, 姚建祥, 乔卫阳, 等.浙江庆元杉木人工林生物量的研究[J].浙江林学院学, 1996, 13(3):235-242. [5] 肖复明, 范少辉, 汪思龙, 等.毛竹(Phyllostachy pubescens)、杉木(Cunninghamia lanceolata)人工林生态系统碳贮量及其分配特征[J].生态学报, 2007, 27(7):2794-2801. [6] 李燕, 张建国, 段爱国, 等.杉木人工林生物量估算模型的选择[J].应用生态学报, 2010, 21(12):3036-3046. [7] 赵坤, 田大伦.会同杉木人工林成熟阶段生物量的研究[J].中南林学院学报, 2000, 20(1):7-13. [8] MONSI M.Mathematical models of plant communities[C]//ECKARDT F E.Functioning of Terrestrial Ecosystems at the Primary Production Level.Proceeding of Copenhagen Symposium.Paris:UNESCO, 1968, 349-358. [9] FUJIMORI T, KAWANABE S, SAITO H, et al.Biomass and primary production in forests of three major vegetation zones of the northwestern United States[J].Journal of Japanese Forest Society, 1976, 58:360-373. [10] 王维枫, 雷渊才, 王雪峰, 等.森林生物量模型综述[J].西北林学院学报, 2008, 23(2):58-63. [11] 方晰, 田大伦, 项文化.间伐对杉木人工林生态系统碳贮量及其空间分配格局的影响[J].中南林业科技大学学报, 2010, 30(11):47-53. [12] KOLCHUGINA, TATYANA P, VINSON T S.Comparison of two methods to assess the carbon budget of forest biomass in the former Soviet Union[J].Water, Air, and Soil Pollution, 1993, 70:207-221. [13] 李意德, 曾庆波, 吴仲民, 等.我国热带天然林植被C贮存量的估算[J].林业科学研究, 1998, 12(2):156-162. [14] 王效科, 冯宗炜.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报, 2001, 12(1):13-16. [15] 阮宏华, 姜志林, 高苏铭.苏南丘陵主要森林类型碳循环研究-含量与分布规律[J].生态学杂志, 1997, 16(6):17-21. [16] 李意德, 吴仲民, 曾庆波, 等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究[J].植物生态学报, 1998, 22(2):127-134. [17] 吴仲民, 李意德, 曾庆波, 等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报, 1998, 9(4):341-344. [18] 陈楚莹, 廖利平, 汪思龙, 等.杉木人工林生态系统碳素分配与贮量的研究[J].应用生态学报, 2000, 11(增刊):175-178. [19] 马钦彦, 陈遐林, 王娟, 等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报, 2002, 24(5/6):96-100. [20] BRANDEIS T J, DELANEY M, PARRESOL B R, et al.Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume[J].Forest Ecology and Management, 2006, 233:133-142. [21] VALLET P, DHOTE J F, MOGUÉDEC G L, et al.Development of total aboveground volume equations for seven important forest tree species in France[J].Forest Ecology and Management, 2006, 229:98-110. [22] TER-MIKAELIAN M T, KORZUKHIN M D.Biomass equations for sixty-five North American tree species[J].Forest Ecology and Management, 1997, 97:1-24. [23] ALABACK P B.Biomass regression equations for under story plants in coastal Alaska:Effects of species and sampling design on estimates[J].Northwest Science, 1986, 60:90-103. [24] 田大伦, 方晰, 项文化, 等.湖南会同杉木人工林生态系统碳素密度[J].生态学报, 2004, 24(11):2382-2386. [25] 方晰, 田大伦, 项文化, 等.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学, 2002, 38(3):14-19. [26] 侯振宏, 张小全, 徐德应, 等.杉木人工林生物量和生产力研究[J].中国农学通报, 2009, 25(5):97-103. [27] 艾训儒, 周光龙.中亚热带北缘杉木人工林生物量的研究[J].湖北林业科技, 1996, (2):17-20. [28] 秦建华, 姜志林.杉木林生物量及其分配的变化规律[J].生态学杂志, 1996, 15(1):1-7. [29] MATAMALA R, GONZALEZ-MELER M A, JASTROW J D, et al.Impacts of fine root turnover on forest NPP and soil Csequestration potential[J].Science, 2003, 302:1385-1387. [30] CHEN G S, HE Z M, XIE J S, et al.Comparatively study on fine root production, distribution and turnover between plantations of Fokienia hodginsii and Cunninghamia lanceolata[J].Scientia Silvae Sinicae, 2004, 40(4):15-21. [31] MAJDI H, PREGITZER K, MORÉN A S, et al.Measuring fine root turnover in forest ecosystems[J].Plant and Soil, 2005, 276:1-8. |
[1] | 辛在军, 李秀珍, 贾悦, 郭文永, 孙永光. 模拟及河道实验浮床水芹根系生长及生物量分配对比研究[J]. 长江流域资源与环境, 2016, 25(Z1): 50-58. |
[2] | 项小燕, 吴甘霖, 段仁燕, 王志高, 张中信, 王广艳, 张小平. 大别山五针松种群结构及动态研究[J]. 长江流域资源与环境, 2016, 25(01): 55-62. |
[3] | 张林, 王礼茂, 王睿博,. 长江中上游防护林体系森林植被碳贮量及固碳潜力估算[J]. 长江流域资源与环境, 2009, 18(2): 111-. |
[4] | 陈亮中,谢宝元,肖文发,黄志霖. 三峡库区主要森林植被类型土壤有机碳贮量研究[J]. 长江流域资源与环境, 2007, 16(5): 640-640. |
|