长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 860-867.doi: 10.11870/cjlyzyyhj201505020

• 生态环境 • 上一篇    下一篇

基于SCS-CN与MUSLE模型的三峡库区小流域侵蚀产沙模拟

吕明权, 吴胜军, 温兆飞, 陈吉龙, 姜毅, 甘捷   

  1. 中国科学院重庆绿色智能技术研究院, 中国科学院水库水环境重点实验室, 重庆 400714
  • 收稿日期:2014-03-31 修回日期:2014-08-11 出版日期:2015-05-20
  • 作者简介:吕明权(1987~),男,研究实习员,硕士,主要从事环境变化研究.E-mail:lvmingquan@cigit.cas.cn
  • 基金资助:
    重庆市科技攻关项目(cstc2012ggB20001);国家自然科学基金(41401633);三峡后续规划项目(cstc2014yykfc20002);重庆市应用开发计划项目重大

MODELLING SOIL EROSION AND SEDIMENT YIELD IN A SMALL WATERSHED OF THREE GORGES RESERVOIR AREA BASED ON SCS-CN AND MUSLE MODEL

LV Ming-quan, WU Sheng-jun, WEN Zhao-fei, CHEN Ji-long, JIANG Yi, GAN Jie   

  1. Chongqing Institute of Green and Intelligent Technology, Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
  • Received:2014-03-31 Revised:2014-08-11 Online:2015-05-20
  • Contact: 吴胜军 E-mail:wsj@cigit.ac.cn

摘要: 传统土壤侵蚀模型模拟次降雨产沙时难以确定泥沙输移系数, 分布式的侵蚀产沙模型对数据量需求量大。选择三峡库区宋家沟小流域为研究对象, 基于2013年的降雨、植被盖度、地形、土壤等数据, 利用SCS-CN和MUSLE模型耦合模拟流域的场降雨的产沙量。结果表明:该模型的模拟值的精确度在可接受范围内, 整个流域2013年的泥沙流失量是3 923 t, 全年中5场较大的降雨贡献了泥沙流失量的80%以上;不同土地利用类型的泥沙输出量差异很大, 耕地(面积44.63%)贡献了81.54%的泥沙, 有林地(面积47.61%)贡献了17.63%的泥沙;坡度在0~8度的区域贡献的产沙量仅为1.75%, 大于25度的区域占流域面积的比例是39.21%, 产沙量占55.77%;泥沙模拟值相比实测值偏大, 其原因可能是流域中分布的池塘改变了径流过程, 发挥拦截泥沙功能。

关键词: 三峡库区, 侵蚀泥沙, MUSLE模型, SCS-CN模型

Abstract: Soil erosion affected by a variety of natural factors and human activities has been a major concern to the public for decades. It is difficult for modelling soil loss using former soil erosion model to determine sediment transport coefficient, while soil erosion distributed models need a large number of input data. Among soil erosion models, the universal soil loss equation (USLE) is the most widely used and misused soil loss estimation equation in the world. The USLE was originally applied to the prediction of soil losses from agriculture in the USA, in order to preserve soil resources, but has been extended for use in numerous countries. USLE is an empirical equation that predicts annual average, long-term soil erosion, but does not simulate dynamic and continuous changes. The MUSLE model estimates sediment yield on a single storm basis and the output is interpreted as sediment yield coming at the outlet of the catchment. This is computed based on a combination of runoff and catchment characteristics. In addition, the integration of GIS has evolved from the advances in geospatial techniques and the increasing availability of spatial databases. The SCS-CN model and the MUSLE model were used to model soil yield for every rainfall. A small watershed, Songjiagou watershed in Three Gorges Area (TGA), was chosen to validate the SCS-CN and the MUSLE model applicability based on rainfall, vegetation coverage, soil, and DEM data. The accuracy of the simulation values of the model is in an acceptable range. Soil loss in the watershed in 2013 was 3 923 t, 80% of which was from the 5 largest rainfall events. Sediment yield from different land uses varies considerably. 81.54% of sediment loss was from cultivated land, which accounted for 44.63%. However, forestland with an area of 47.61% of the whole watershed, only contributed to 17.63% of the sediment loss. Grade differences in slope had a great influence on sediment yield. Only 1.75% of sediment was from area with slope in the 0-8 degrees, while the area with slope more than 25 degrees contributing to 55.77% sediment. The reason of larger sediment simulation value compared with the measured values may be pond interception effect. The role of pond in changing hydrologic effect and migration of sediment need follow-up study.

Key words: Three Gorges Reservoir, erosion and sediment, MUSLE model, SCS-CN model

中图分类号: 

  • S157
[1] 龙天渝, 乔敦, 安强, 等.基于GIS和RUSLE的三峡库区土壤侵蚀量估算分析[J].灌溉排水学报, 2012, 31(2):33-37.
[2] 谌芸, 何丙辉, 赵秀兰, 等.小江流域农地水土流失对水体富营养化的影响[J].水土保持学报, 2010, 24(4):31-34.
[3] 高扬, 朱波, 王玉宽, 等.自然和人工模拟降雨条件下紫色土坡地的磷素迁移[J].水土保持学报, 2006, 20(5):34-37.
[4] 蒋锐, 朱波, 唐家良, 等.紫色丘陵区典型小流域暴雨径流氮磷迁移过程与通量[J].水利学报, 2009, 40(6):659-666.
[5] 王超, 赵培, 高美荣, 等.紫色土丘陵区典型生态-水文单元径流与氮磷输移特征[J].水利学报, 2013, 44(6):748-754.
[6] XU D, DING S M, SUN Q, et al.Evaluation of in situ capping with clean soils to control phosphate release from sediments[J].Science of the Total Environment 2012, 438:334-341.
[7] AKSOY H, LEVENT KAVVAS M.A review of hillslope and watershed scale erosion and sediment transport models[J].Catena, 2005, 64:247-271.
[8] RANZI R, LE T H, RULLI M C.A RUSLE approach to model suspended sediment load in the Lo river(Vietnam):Effects of reservoirs and land use changes[J].Journal of Hydrology, 2012, 422-423:17-29.
[9] ZHOU P, LUUKKANEN O, TOKOLA T, et al.Effect of vegetation cover on soil erosion in a mountainous watershed[J].Catena, 2008, 75:319-325.
[10] BORRELLI P, MÄRKER M, PANAGOS P.Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy[J].Catena, 2014, 114:45-58.
[11] CHO J, MOSTAGHIMI S.Dynamic agricultural non-point source assessment tool(DANSAT):Model development[J].Biosystems engineering, 2009, 102:486-499.
[12] 刘瑞娟, 张万昌.基于动态产流机制的分布式土壤侵蚀模型研究[J].水土保持通报, 2010, 30(6):139-144.
[13] WU Y P, CHEN J.Modeling of soil erosion and sediment transport in the East River Basin in southern China[J].Science of the Total Environment, 2012, 441:159-168.
[14] GLAVAN M, MILICIC V, PINTAR M.Finding options to improve catchment water quality-Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia[J].Ecological Modelling 2013, 261-262:58-73.
[15] SADEGHI S H R, GHOLAMI L, DARVISHAN A K, et al.A review of the application of the MUSLE model worldwide[J].Hydrological Sciences Journal, 2014, 59(2):1-11.
[16] WILLIAMS J R, BERNDT H D.Sediment yield prediction based on watershed hydrology[J].Transactions of the American Society of Agricultural and Biological Engineers, 1977, 20(6):1100-1104.
[17] WILLIAMS J R.Sediment-yield prediction with Universal Equation using runoff energy factor, present and prospective technology for predicting sediment yield and sources.ARS-S-40[Z].Brooksville, FL:US Department of Agriculture, Agricultural Research Service, 1975:244-252.
[18] USDA-NRCS.Estimation of Direct Runoff from Storm Rainfall, National Engineering Handbook, Part 630 Hydrology[Z].United States Department of Agriculture-Natural Resources Conservation Service, Washington, DC(Chapter 10), 2004
[19] SHI Z, CHEN L, FANGA N, et al.Research on the SCS-CN Initial Abstraction Ratio Using Rainfall-Runoff Event Analysis in the Three Gorges Area, China[J].Catena, 2009, 352(1):1-7
[20] USDA-NRCS.Estimation of Direct Runoff from Storm Rainfall, National Engineering Handbook, Part 630 Hydrology[Z].United States Department of Agriculture-Natural Resources Conservation Service, Washington, DC(Chapter 16), 2004.
[21] WILLIAMS J R, JONES C A, DYKE P T.A modeling approach to determining the relationship between erosion and productivity[J].Transactions of the ASAE, 1984, 27(1):129-144.
[22] MCCOOL D K, FOSTER G R, WEESIES G A.Slope Length and Steepness Factors(LS)[Z].United States Department of Agriculture, Agricultural Research Service(USDA-ARS)Handbook 703, 1997.
[23] ZHANG H M, YANG Q K, LI R, et al.Extension of a GIS procedure for calculating the RUSLE equation LS factor[J].Computers & Geosciences, 2013, 52:177-188.
[24] 蔡崇法, 丁树文, 史志华, 等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报, 2000, 14(2):19-24.
[25] 马超飞, 马建文, 布和敖斯尔, 等.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报, 2001, 21(4):6-9.
[26] SHI Z H, AI L, FANG N F, et al.Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery:A case study in the Three Gorges Area, China[J].Journal of Hydrology, 2012, 438-439:156-167.
[27] NASH J E, SUTCLIFFE J V.Riverflow forecasting through conceptual models Part 1-A discussion of principles[J].Journal of Hydrology, 1970, 10:282-29.
[28] VERSTRAETEN G, POESEN J.Estimating trap efficiency of small reservoirs and ponds:Methods and implications for the assessment of sediment yield[J].Progress in Physical Geography, 2000, 24(2):219-251.
[29] SMITH S V, RENWICK W H, BARTLEY J D, et al.Distribution and significance of small, artificial water bodies across the United States landscape[J].The Science of the Total Environment, 2002, 299:21-36.
[30] FIENER P, AUERSWALD K, WEIGAND S.Managing erosion and water quality in agricultural watersheds by small detention ponds[J].Agriculture, Ecosystems and Environment, 2005, 110:132-142.
[31] 贺秀斌, 张信宝, WALLING D E.基于湖库沉积剖面137Cs变化的流域表层侵蚀速率计算模型[J].自然科学进展, 2005, 15(4):495-498.
[32] 齐永青, 张信宝, 贺秀斌, 等.川中丘陵区和三峡地区小流域侵蚀产沙的塘库沉积137Cs断代[J].地理研究, 2006, 25(4):641-648.
[1] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618.
[2] 黄亚男, 纪道斌, 龙良红, 刘德富, 宋林旭, 苏青青. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(03): 461-470.
[3] 应弘, 李阳兵. 三峡库区腹地草堂溪小流域土地功能格局变化[J]. 长江流域资源与环境, 2017, 26(02): 227-237.
[4] 祖波, 周领, 李国权, 刘波. 三峡库区重庆段某排污口下游污染物降解研究[J]. 长江流域资源与环境, 2017, 26(01): 134-141.
[5] 刘均卫, 刘涛. 三峡库区支流常年库区航道通航尺度研究[J]. 长江流域资源与环境, 2016, 25(11): 1711-1719.
[6] 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942.
[7] 王晓荣, 程瑞梅, 肖文发, 潘磊, 曾立雄. 三峡库区消落带水淹初期主要优势草本植物生态位变化特征[J]. 长江流域资源与环境, 2016, 25(03): 404-411.
[8] 杨杉, 吴胜军, 周文佐, 吕明权, 张德微, 黄平. 三峡库区典型土壤酸碱缓冲性能及其影响因素研究[J]. 长江流域资源与环境, 2016, 25(01): 163-170.
[9] 王林, 陈正洪, 代娟, 汤阳. 气象因子与地理因子对长江三峡库区雾的影响[J]. 长江流域资源与环境, 2015, 24(10): 1799-1804.
[10] 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350.
[11] 施鹏程, 彭道黎, 黄国胜, 王雪军, 曾伟生, 马炜, 叶林妹. 三峡库区乔木林生物量和碳储量的估算[J]. 长江流域资源与环境, 2015, 24(06): 1052-1059.
[12] 刘晓冉, 杨茜, 程炳岩, 张天宇. 三峡库区21世纪气候变化的情景预估分析[J]. 长江流域资源与环境, 2010, 19(01): 42-.
[13] 王丽婧, 郑丙辉, 李子成. 三峡库区及上游流域面源污染特征与防治策略[J]. 长江流域资源与环境, 2009, 18(8): 783-.
[14] 王鹏程, 姚, 婧, 肖文发, 张守攻, 黄志霖, 曾立雄, 潘, 磊. 三峡库区森林植被分布的地形分异特征[J]. 长江流域资源与环境, 2009, 18(6): 528-.
[15] 叶殿秀 张 强 邹旭恺 陈鲜艳. 近几十年三峡库区主要气象灾害变化趋势[J]. 长江流域资源与环境, 2009, 18(3): 296-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .