长江流域资源与环境 >> 2015, Vol. 24 >> Issue (06): 1067-1071.doi: 10.11870/cjlyzyyhj201506023

• 自然灾害 • 上一篇    下一篇

利用微气象测定仪MINCER分析热害条件下的水稻冠层微气象特征

姚仪敏1, 闫浩亮1, 陈建珍1, 刘盼春1, 松井勤2, 田小海1   

  1. 1. 长江大学农学院, 湖北 荆州 434025;
    2. 日本岐阜大学应用生命科学学部, 日本 岐阜县 501-2354
  • 收稿日期:2014-11-26 修回日期:2015-04-07 出版日期:2015-06-20
  • 作者简介:姚仪敏(1990~ ),女,硕士研究生,主要从事水稻高温逆境方面研究.E-mail:yaoyimin958047717@163.com*
  • 基金资助:
    中日合作项目Multilateral Research Exchange Project for Securing Food and Agriculture(33118059);国家公益性行业(农业)科研专项 (201203019);国家科技支撑计划(2012BDA04B12);湖北省自然科学基金项目(2014EFB225)

ANALYSIS ON CHARACTERIZING THE MICRO-METEOROLOGY OF RICE CANOPY BY MINCER AT FLOWERING STAGE UNDER HEAT-STRESSED SCENARIOS

YAO Yi-min1, YAN Hao-liang1, CHEN Jian-zhen1, LIU Pan-chun1, Tsutomu Matsui2, TIAN Xiao-hai1   

  1. 1. Agricultural College, Yangtze University, Jingzhou 434025, China;
    2. Applied Biological Faculty, Gifu University, Gifu 501-2354, Japan
  • Received:2014-11-26 Revised:2015-04-07 Online:2015-06-20
  • Contact: 田小海 E-mail:xiaohait@sina.com

摘要: 采用模型模拟水稻热害过程及其可能的产量损失是水稻耐高温研究的重要一环,但较精确地测定水稻冠层的微气象条件还存在诸多困难。采用最新研制的水稻冠层微气象测定仪Mincer实地测定法研究了水稻花期热害受害下的冠层微气象特征,并将相关数据与邻近国家基本气象观测站的数据比较,从而形成了水稻冠层、水稻田田面上部(距田面2倍株高,约1.9 m)和空旷地(距地面1.5 m)等的对比。结果表明,供试品种受到花期热害后,结实率降低4.0%,达到显著受害水平。在此条件下,日平均气温值由水稻田冠层、水稻田上部与空旷地相比依次升高,水稻冠层与水稻田上部的温度值一般分别比空旷地低2.05、0.92℃,且在连续高温的部分时段出现冠层温度的异常升高;相对湿度值反之,由冠层内部、水稻田上部与空旷地依次降低,水稻冠层与水稻田上部的相对湿度值分别比空旷地低高14.55%、5.97%(绝对值)。此外,高温天气下开花前后水稻田上部与冠层温湿度差的变化幅度都小于常温天气,且出现的时间段早于常温。这些结果,对设定水稻高温受害鉴定条件、模拟水稻高温受害过程均具有重要指导意义。

关键词: 水稻, 热害, 冠层, MINCER

Abstract: Applying model to simulate the process of rice heat injury and its potential yield loss is a key part of the research on high temperature resistance of rice, but there exist some difficulties in measuring micrometeorology of rice canopy accurately. This study adopted MINCER, which is the latest newly development for rice canopy micrometeorological measurement, to determine the microclimate conditions in rice canopy during heat injury. Comparing the observation data with the meteorological data of the neighborhood national basic meteorological station, three groups of comparative data were sorted, such as date of rice canopy, date of upper rice field and date of open area. The date of upper rice field was detected at the height of 1.9 m, which is the twice plant height above the field, and the date of open area was observed at the height of 1.5 m. The experiment shows that the seed setting rate of tested cultivars was significantly reduced by 4% after sufferring high temperature weather at flowering stage. The daily average temperature of rice canopy, upper rice field and open area were increased in turn, and the temperature of rice canopy and upper rice field were 2.05℃ and 0.92℃ lower than the open area. But during continuous high temperature period, the rice canopy temperature showed an abnormal increase periodically. Contrary to the case of temperature, relative humidity of rice canopy, upper rice field and open area were decreased in sequence, relative humidity of rice canopy and upper rice field were 14.55% and 5.97%(absolute value) higher than open area. Under high temperature condition, the variation range of the difference between upper rice field and the rice canopy temperature was less than under normal weather, and great temperature difference between them appeared earlier than under normal weather condition. This was the same as the relative humidity. These results were of great significance to guide the research of the rice heat injury identification conditions and the simulation process of rice heat injury.

Key words: hybrid rice, high temperature, canopy, MINCER

中图分类号: 

  • S511
[1] IPCC.Climate Change 2001-the scientific basis[M].Cambridge,UK:Cambridge University,2001:101-125.
[2] IPCC.IPCC WGI fourth assessment report.climate change 2007:the physical science basis[M].Geneva:Intergovernmental panel on climate change.2007:25-58.
[3] PENG S,HUANG J,SHEEHY J E,et al.Rice yields decline with higher night temperature from global warming[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(27):9971-9975.
[4] MATSUI T,OMASA K,HORIE T.High temperature at flowering inhibits swelling of pollen grains,a driving force for thecae dehiscence in rice[J].Plant Production Science,2000,43(3):24-34.
[5] 田小海,松井勤,李守华,等.水稻花期高温胁迫研究进展与展望[J].应用生态学报,2007,18 (11):2632-2636.
[6] YOSHIMOTO M,FUKUOKA M,HASEGAWA T,et al.MINCERnet:A global research alliance to support the fight against heat stress in rice[J].J.Agric.Meteorol, 2012,68(2):149-157.
[7] YOSHIMOTO M,FUKUOKA M,HASEGAWA T,et al.Integrated micrometeorology model for panicle and canopy temperature (IM2PACT) for rice heat stress studies under climate change[J].Journal of Agricultural Meteorology,2011,67:597-600.
[8] FUKUOKA M,YOSHIMOTO M,HASEGAWA T.MINCER:A novel instrument for monitoring the micrometeorology of rice canopies[J].Journal of Agricultural Meteorology,2012,68(2):135-147.
[9] 苏荣瑞,周守华,耿一风,等.江汉平原水稻关键生育期冠层温度环境响应模型研究[J].湖北农业科学,2010,49(11):2673-2677.
[10] STUERZ S,SOW A,MULLER B,et al.Canopy microclimate and gas-exchange in response to irrigation system in lowland rice in the Sahel[J].Field Crops Research,2014,163:64-73.
[11] 高明超.水稻冠层温度特性及基于冠层温度的水分胁迫指数研究[D].沈阳农业大学,2013:1-135
[12] 高继平,韩亚东,王晓通,等.水稻齐穗期冠层温度分异及其相关特性的研究[J].沈阳农业大学学报,2011,4:399-405.
[13] 张文忠,韩亚东,杜宏绢,等.水稻开花期冠层温度与土壤水分及产量结构的关系[J].中国水稻科学,2007,1:99-102.
[14] CECILE J,MICHAEL D.Predicting temperature induced sterility of rice spikelets requires simulation of crop-generated microclimate[J].European Journal of Agronomy,2013,49:50-60.
[15] TIAN X,MATSUI T,LI S,et al.Heat-induced floret sterility of hybrid rice (Oryza sativa L.) cultivars under humid and low wind conditions in the field of Jianghan Basin,China[J].Plant production science,2010,13(3):243-251.
[16] SATAKE T,YOSHIDA S.High temperature-induced sterility in indica rices at flowering[J].Japanese Journal of Crop Science.1978,47(1):6-17.
[17] NISHIYAMA I.Male sterility caused by cooling treatment at the young microspore stage in rice plants.ⅩⅩⅢ.Anther length,pollen number and the difference in suscep tibility to coolness among spikelets on the panicle[J].Japanese Journal of Crop Science,1982,51(1):462-469.
[18] MATSUI T,KOBAYASI K,YOSHIMOTO M,et al.Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales,Australia[J].Plant production science,2007,10(1):57-63.
[19] TIAN X,LUO H,ZHOU H,et al.Research on heat stress of rice in China:Progress and prospect[C].Proceedings of the MARCO Symposium 2009 held in Tsukuba,Japan,5-9 October 2009:13-16.
[1] 陆俊, 黄进良, 王立辉, 裴艳艳. 基于时空数据融合的江汉平原水稻种植信息提取[J]. 长江流域资源与环境, 2017, 26(06): 874-881.
[2] 彭国照, 邢开瑜, 曹艳秋. 未来30a凉山州水稻盛夏低温危害风险分析[J]. 长江流域资源与环境, 2016, 25(Z1): 103-110.
[3] 付莲莲, 朱红根, 周曙东. 江西省气候变化的特征及其对水稻产量的贡献——基于“气候-经济”模型[J]. 长江流域资源与环境, 2016, 25(04): 590-598.
[4] 于欢, 陆伟婷, 曹胜男, 陈长青. 近20年江苏省气温和降水资源变化对稻麦生产的影响[J]. 长江流域资源与环境, 2015, 24(11): 1876-1883.
[5] 叶文培,王开峰,王凯荣,谢小立,李志国. 长期有机物循环对红壤稻田养分及水稻生长的影响[J]. 长江流域资源与环境, 2008, 17(5): 746-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 吕新苗,郑 度. 气候变化对长江源地区高寒草甸生态系统的影响[J]. 长江流域资源与环境, 2006, 15(5): 603 -607 .
[4] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[5] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[6] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[7] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[8] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[9] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .
[10] 许健民, 吕开宇, 娄博杰. 农业生产对土壤盐渍化影响的经济分析[J]. 长江流域资源与环境, 2009, 18(2): 132 .