长江流域资源与环境 >> 2015, Vol. 24 >> Issue (06): 949-955.doi: 10.11870/cjlyzyyhj201506008

• 自然资源 • 上一篇    下一篇

贡嘎山森林系统小流域基流分割与降雨入渗补给计算

高东东1, 吴勇1, 陈盟1, 王春红2   

  1. 1. 地质灾害防治与地质环境保护国家重点实验室(成都理工大学), 四川 成都 610059;
    2. 四川省核工业地质局282大队, 四川 德阳 618000
  • 收稿日期:2014-05-21 修回日期:2014-06-27 出版日期:2015-06-20
  • 作者简介:高东东(1984~ ),男,博士研究生,主要从事环境水文地质研究.E-mail:hydrogeochemistry@126.com*
  • 基金资助:
    国家自然科学基金重点项目:典型山地水文生态系统水循环多尺度耦合的对比试验研究(40730634)

BASEFLOW SEPARATION AND RAINFALL INFILTRATION CALCULATION OF SMALL WATERSHED IN GONGGA MOUNTAIN FOREST SYSTEM

GAO Dong-dong1, WU Yong1, CHEN Meng1, WANG Chun-hong2   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China;
    2. No.282 Brigade of Nuclear Industry Geological Bureau in Sichuan Province, Deyang 618000, China
  • Received:2014-05-21 Revised:2014-06-27 Online:2015-06-20
  • Contact: 吴勇 E-mail:ywu@cdut.edu.cn

摘要: 利用不同的方法对贡嘎山黄崩溜沟水文站实测日径流资料进行了基流分割,并利用数理统计方法对基流指数的均值、均方差、变异系数进行了计算,并对黄崩溜沟基流过程和地表径流、基流的滞后时间进行了分析。黄崩溜沟基流分割指数为0.65~0.74,平均值为0.71;枯水期,黄崩溜沟地表径流量相对降雨量滞后时间为2.7~14.5 d,平均滞后8 d,基流量相对地表径流滞后0.7~3 d,平均滞后1.8 d;丰水期,黄崩溜沟地表径流量相对降雨量滞后时间为0.7~3.7 d,平均滞后1.8 d,基流量相对地表径流滞后0.9~2.6 d,平均滞后1.5 d;考虑流域整体,计算黄崩溜沟流域降雨入渗补给系数为0.16~0.28。研究表明:利用数字滤波法中F4方法对黄崩溜沟径流进行基流分割,其结果的稳定性与可靠性最佳;丰水期黄崩溜沟地表径流量相对降雨量滞后时间明显比枯水期短,而其基流量相对地表径流滞后时间丰水期、枯水期相差不大;对某一流域径流进行基流分割时应选取多种方法,并需要对其分割结果的稳定性与可靠性进行讨论,按照流域计算降雨入渗补给地下水补给问题应考虑流域整体,尤其是在山区。

关键词: 森林系统, 小流域, 基流分割, 降雨入渗系数

Abstract: In this study, different methods of baseflow separation were used to analyze the daily runoff data measured by the hydrologic observation station in HuangBengLiu Gully, Gongga Mountain. The separation results, mean value, meanvariance and coefficient of deviation of the baseflow indices were calculated. Baseflow process and lag time of the runoff and baseflow in HuangBengLiu Gully were analyzed. The baseflow indices were found to range from 0.65 to 0.74 in HuangBengLiu Gully and averaged 0.7. In the dry season, the runoff of HuangBengLiu Gully lagged 2.7 to 14.5 days relative to the rainfall and averaged 8 days. The baseflow lagged 0.7 to 3 days relative to the runoff and averaged 1.8 days. In the wet season, the runoff of HuangBengLiu Gully lagged 0.7 to 3.7 days, with an average of 1.8 days, and the baseflow lagged 0.9 to 2.6 days, with aa average of 1.5 days. When considering basin as whole, the calculated precipitation infiltration recharge coefficient ranged from 0.16 to 0.28. The results showed that the stability and reliability of the separation results by F4 digital filtering method are the best. The runoff lag time relative to the rainfall in the wet season was shorter than in the dry season, but the differences in baseflow lag time between wet and dry season was relative minor. According this study, we argue that multiple methods should be used to separate baseflow from runoff of a watershed, and the stability and reliability of the separation results should be considered. The whole basin problems should be considered when calculating groundwater recharge with watershed, especially in the mountains.

Key words: forest system, small watershed, baseflow separation, precipitation infiltration coefficient

中图分类号: 

  • P345
[1] 陈富斌,高生淮.贡嘎山高山生态环境研究[M].成都:成都科技大学出版社,1993:59-68.
[2] 钱开铸,吕京京,陈 婷,等.基流计算方法的进展与应用[J].水文地质工程地质,2011,38(4):20-25,31.
[3] LYNE V,HOLLICK M.Stochastic time-variable rainfall-runoff modeling[A]//Hydrology and Water Resources Symposium,National Committee on Hydrology and Water Resources of the Institute of Engineering,Perth,Western Australia,Australia,1979:89-93.
[4] NATHAN R J,MCMAHON T A.Evaluation of automated techniques for baseflow and recession analysis[J].Water Resources Research,1990,26(7):1465-1473.
[5] 杨 蕊,王 龙,韩春玲.9种基流分割方法在南盘江上游的应用对比[J].云南农业大学学报,2013,28(5):707-712.
[6] CHAPMAN T G.Comment on "Evaluation of automated techniques for baseflow and recession analysis" by R J Nathan and T A McMahon[J].Water Resources Research,1991,27(7):1783-1784.
[7] CHAPMAN T G,MAXWELL A I.Baseflow separation-comparison of numerical methods with tracer experiments[C].In Institute Engineers Australia National Conference.Camberra:Institute of Engineers Australia,1996:539-545.
[8] CHAPMAN T G.A comparison of algorithms for stream flow recession and baseflow separation[J].Hydrological Processes,1999,13:701-714.
[9] Institute of Hydrology.Low flow studies[R].Wallingford,Oxon,United Kingdom,report No.3,1980:12-19.
[10] PETTYJOHN W A,HENNING R.Preliminary estimate of ground-water recharge rates,related stream-flow and water quality in Ohio[R].Ohio State University Water Resources Center Project Completion Report,1979,552:323-325.
[11] 李秀博.贡嘎山地区四种植被类型林冠截留特征及其对地下水补给的影响[D].成都:成都理工大学硕士学位论文,2010.
[12] 王春红.贡嘎山东坡森林区地下水补给系数的尺度研究[D].成都:成都理工大学硕士学位论文,2010.
[13] 陈富斌,高生淮.贡嘎山高山生态环境研究[M].成都:成都科技大学出版社,1993:69-79.
[14] 高东东,吴 勇,王潇橦.山地森林系统小流域降雨过程水循环与地下水补给[J].水文地质工程地质,2014,41(1):7-14.
[1] 应弘, 李阳兵. 三峡库区腹地草堂溪小流域土地功能格局变化[J]. 长江流域资源与环境, 2017, 26(02): 227-237.
[2] 龚旭昇, 郭葳, 周玉龙, 邓绪伟, 汪正祥, 李中强. 基于GIS分析的生态清洁小流域治理思路——以陕西省石泉县饶峰河小流域为例[J]. 长江流域资源与环境, 2016, 25(Z1): 78-82.
[3] 林勇明, 葛永刚, 王道杰, 庄建琦, 陈灿, 吴承祯. 山区县乡公路建设对沿线景观格局的影响研究——以昆明市东川区蒋家沟小流域为例[J]. 长江流域资源与环境, 2016, 25(10): 1566-1575.
[4] 张梦, 第宝锋, Constantine A. Stamatopoulos, 宋微曦, 王雅潞. 灾变山地环境影响下小流域脆弱性评价研究[J]. 长江流域资源与环境, 2015, 24(06): 1072-1078.
[5] 李海东, 张波, 沈渭寿, 张金池, 张晓勉, 林 杰. 苏南山丘区小流域土壤养分特性空间分布[J]. 长江流域资源与环境, 2009, 18(9): 831-.
[6] 张利平, 陈小凤, 张晓琳, 宋星原. VIC模型与SWAT模型在中小流域径流模拟中的对比研究[J]. 长江流域资源与环境, 2009, 18(8): 745-.
[7] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102-106.
[8] 采浦·哈拉尔特,张 斌,景元书,唐家良. 中国东南亚热带小流域混合农业区水文过程的实验研究(简报)[J]. 长江流域资源与环境, 2006, 15(5): 638-640.
[9] 张荣保,姚 琪,计 勇,王 鹏. 太湖地区典型小流域非点源污染物流失规律——以宜兴梅林小流域为例[J]. 长江流域资源与环境, 2005, 14(1): 94-98.
[10] 陈 良. 低山丘陵区水土保持治理与生态环境效应[J]. 长江流域资源与环境, 2004, 13(4): 370-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[6] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 蔡海生, 肖复明, 张学玲. 基于生态足迹变化的鄱阳湖自然保护区生态补偿定量分析[J]. 长江流域资源与环境, 2010, 19(06): 623 .