长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1381-1386.doi: 10.11870/cjlyzyyhj201508017

• 生态环境 • 上一篇    下一篇

降雨径流面源污染年负荷预测方法的开发——以镇江古运河为例

周明涛1,2, 胡旭东1, 张守德1, 高家祯1   

  1. 1. 三峡大学土木与建筑学院, 湖北 宜昌 443002;
    2. 三峡大学三峡地区地质灾害与 生态环境湖北省协同创新中心, 湖北 宜昌 443002
  • 收稿日期:2014-10-27 修回日期:2014-12-25 出版日期:2015-08-20
  • 作者简介:周明涛(1979~),男,副教授,博士,主要研究方向为城市内河堤岸生态防护技术.E-mail:zmt@ctgu.edu.cn
  • 基金资助:
    十二五国家科技支撑计划项目"金沙江梯级水电开发区生态保护与入库泥沙调控关键技术与示范"(2012BAC06B02);三峡大学研究生科研创新基金项目(2014CX019)

DEVELOPMENT OF THE METHOD TO ESTIMATE THE ANNUAL LOAD OF RAINFALL-RUNOFF NON-POINT SOURCE POLLUTION——A CASE STUDY IN ZHENJIANG ANCIENT CANAL

ZHOU Ming-tao1,2, HU Xu-dong1, ZHANG Shou-de1, GAO Jia-zhen1   

  1. 1. China Three Gorges University, College of Civil Engineering & Architecture, Hubei Province, Yichang 443002, China;
    2. China Three Gorges University, Collaborative Innovation Center for Geo-hazards and Eco-Environment in Three Gorges Area, Hubei Province, Yichang 443002, China
  • Received:2014-10-27 Revised:2014-12-25 Online:2015-08-20

摘要: 在对镇江古运河2009~2013年的降雨量、降雨径流污染物量监测的基础上,运用回归分析建立降雨量-径流污染方程,并采用灰色理论对未来降雨量进行预测,进而得出降雨径流面源污染年负荷值。结果表明:2014~2020年间,镇江古运河降雨径流中污染物TP、NH3-N和SS的年负荷与降雨量同向变化,2020年降雨量达到1 381.2 mm时,污染物TP、NH3-N和SS的年负荷可分别达到217.15 t、421.4 t、5 811.87 t,数值较大;灰色理论与回归分析结合所提出的降雨径流面源污染年负荷预测方法,能够在小样本、贫信息和波动数据序列情况下,简捷有效的对降雨径流面源污染负荷进行高精度的预测,实用与推广价值较大。

关键词: 降雨径流, 面源污染, 降雨量-径流污染物方程, 灰色理论

Abstract: With the pace of urban modernization, non-point source pollution is becoming increasingly serious to the urban rivers. According to the survey data, the concentrations of total phosphorus (TP), ammonium (NH3-N) and suspended solids (SS) in Zhenjiang Ancient Canal were higher than the national standard. As a result, the water quality of the Ancient Canal has been seriously polluted, therefore it's urgent for us to take measures to monitor the water quality and build model to analyze the water quality of the Ancient Canal. Based on the monitoring data of rainfall, the content of contaminants in rainfall runoff in Zhenjiang Ancient Canal from 2009 to 2013, we established a regression equation between rainfall and runoff pollution, and then applied the Grey theory to predict future rainfall. Grey theory is the essential to make the irregular data variations into the regular data, through the way of accumulation, subtraction and so on to process, then using the differential equation fitting, and predict the future data by extension. What's more, the known original data is called white, the prediction data is called gray, and process is called bleaching or weakening of the randomness of the data sequence. The results reveal that the annual loads of TP, NH3-N of rainfall runoff pollutants are expected to change with the rainfall in the canal, and the concentration of TP, NH3-N and SS will change similarly from 2014 to 2020; when the rainfall reaches 1 381.2 mm in 2020, the annual load of TP, NH3-N and SS will reach 217.15 t, 421.4 t, and 5 811.87 t, respectively and the concentrations of contaminants in rainfall runoff will be very large. Therefore, we should make green, clear the rubbish, take measures of the slope protection and a series of measures on both sides of the Ancient Canal to reduce the non-point source pollution produced by rain runoff, and then we can achieve good water quality of the river after taking action. Furthermore, the comfortable environment can provide a better life for the local people. Grey theory can weaken the fluctuation data sequence. regression analysis can establish the quantitative relationship to depend on each other between multiple variables. This paper combined the grey theory with regression analysis to propose the way to predict the load of rainfall runoff non-point source pollution, which can precisely forecasting the load of rainfall runoff non-point source pollution simply and effectively under the conditions of small sample, poor information and fluctuation data, and has great significance to promote.

Key words: rainfall runoff, Non-point source pollution, regression equations between rainfall and runoff pollution, Grey theory

中图分类号: 

  • X502
[1] 叶 闽,杨国胜,张万顺,等.城市面源污染特性及污染负荷预测模型研究[J].环境科学与技术,2006,29(2):67-69.
[2] 王 龙,黄跃飞,王光谦.城市非点源污染模型研究进展[J].环境科学,2010,31(10):2532-2540.
[3] PARK S Y,LEE K W,PARK I H,et al.Effect of the aggregation level of surface runoff fields and sewer network for a SWMM Simulation[J].Desalination,2008,226(1-3):328-337.
[4] 龙天渝,梁常德,李继承,等.基于SLURP模型和输出系数法的三峡库区非点源氮磷负荷预测[J].环境科学学报,2008,28(3):574-581.
[5] 陈克亮,朱晓东,王金坑,等.厦门市海岸带水污染负荷估算及预测[J].应用生态学报,2007,18(9):2091-2096.
[6] 雒文生,宋星原.水环境分析及预测[M].武汉:武汉水利电力大学出版社,2000.
[7] 边 博.前期晴天时间对城市降雨径流污染水质的影响[J].环境科学,2009,30(12):3522-3526.
[8] 国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
[9] 邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
[10] CHEN C K. A new method for grey modeling jump series[J].The Journal of Grey System,2002,14(2):123-132.
[11] 毕小刚,段淑怀,李永贵,等.北京山区土壤流失方程探讨[J].中国水土保持科学,2006,4(4):6-13.
[12] 傅 春,康晚英.环鄱阳湖区农业面源污染TN/TP时空变化与分布特征[J].长江流域资源与环境,2012,21(7):864-868.
[13] 贺宝根,周乃晟,胡雪峰,等.农田降雨径流污染模型探讨[J].长江流域资源与环境,2001,10(2):159-165
[14] 李立青,伊澄清.雨、污合流制城区降雨径流污染的迁移转化过程与来源研究[J].环境科学,2009,30(2):368-375.
[15] 陈小兰,黄 绪,陈建军,等.校园河道生态修复规划设计探讨——以三峡大学求索溪为例[J].三峡大学学报(自然科学版),2014,36(1):29-32.
[1] 冷罗生. 日本应对面源污染的法律措施[J]. 长江流域资源与环境, 2009, 18(9): 871-.
[2] 王丽婧, 郑丙辉, 李子成. 三峡库区及上游流域面源污染特征与防治策略[J]. 长江流域资源与环境, 2009, 18(8): 783-.
[3] 李海鹏, 张俊飚. 中国农业面源污染与经济发展关系的实证研究[J]. 长江流域资源与环境, 2009, 18(6): 585-.
[4] 陈 桥| 胡维平, 章建宁. 城市地表污染物累积和降雨径流冲刷过程研究进展[J]. 长江流域资源与环境, 2009, 18(10): 992-.
[5] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 强.
近40年来长江流域水沙变化趋势及可能影响因素探讨
[J]. 长江流域资源与环境, 2008, 17(2): 257 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 袁旭音. 污染河道的常量和微量元素特征及指示意义[J]. 长江流域资源与环境, 2008, 17(2): 270 .
[5] 张其成,姚亦锋,蒋成煜. 南京城市滨江带功能演变及现代景观规划研究[J]. 长江流域资源与环境, 2004, 13(1): 30 -34 .
[6] 胡鸿兴,康洪莉,贡国鸿,朱觅辉5,郑文勤5,吴法清,何定富,李振文,耿 栋5. 湖北省湿地冬季水鸟多样性研究[J]. 长江流域资源与环境, 2005, 14(4): 422 -428 .
[7] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[8] 吴之坤, 张长芹,黄 媛,张敬丽,孙宝玲,. 长江上游玉龙雪山植物物种多样性形成的探讨[J]. 长江流域资源与环境, 2006, 15(1): 48 -53 .
[9] 刘盛和. 中国城市化水平省际差异的成因探析[J]. 长江流域资源与环境, 2004, 13(6): 530 -535 .
[10] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .