长江流域资源与环境 >> 2015, Vol. 24 >> Issue (11): 1898-1905.doi: 10.11870/cjlyzyyhj201511013

• 生态环境 • 上一篇    下一篇

半月周期的潮汐对滨海湿地土壤理化性质的影响

布乃顺1, 王坤1, 侯玉乐1, 李钢1, 齐淑娟1, 方长明2, 渠俊峰1   

  1. 1. 中国矿业大学环境与测绘学院, 江苏 徐州 221116;
    2. 复旦大学生命科学学院, 上海 200438
  • 收稿日期:2015-04-07 修回日期:2015-07-10 出版日期:2015-11-20
  • 通讯作者: 渠俊峰,E-mail:qjf4209779@163.com E-mail:qjf4209779@163.com
  • 作者简介:布乃顺(1982~),男,博士后,主要研究方向为湿地生态学和土壤生态学.E-mail:bunaishun@163.com
  • 基金资助:
    中国矿业大学青年科技基金项目:高潜水位采煤沉陷地水盐运移特征及调控研究(2011QNB12);国家重点基础研究发展计划项目:中国陆地生态系统碳源汇特征及其全球意义(2010CB950600);科技部支撑计划:河口湿地生态系统碳的保汇与增汇技术研究(2010BAK69B14)

EFFECTS OF SEMI-LUNAR TIDAL CYCLING ON SOIL PHYSICAL AND CHEMICAL PROPERTIES IN COASTAL WETLANDS

BU Nai-shun1, WANG Kun1, HOU Yu-le1, LI Gang1, QI Shu-juan1, FANG Chang-ming2, QU Jun-feng1   

  1. 1. School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China;
    2. School of Life Science, Fudan University, Shanghai 200438, China
  • Received:2015-04-07 Revised:2015-07-10 Online:2015-11-20

摘要: 周期性的潮汐是滨海湿地重要的水文特征,为了探讨潮汐的半月周期(包括小潮期和大潮期)对土壤理化性质的影响及可能的机制,于2009年7月中下旬测定了长江口崇明东滩湿地土壤理化性质在小潮期和大潮期交替周期内的变化规律。结果表明,与小潮期相比,由于频繁的潮水淹没,大潮期0~5 cm土壤含水量的增加量从低潮滩向高潮位依次为:44.8%、18.5%、10.9%和14.3%,5~10 cm含水量的增加量从低潮滩向高潮位依次为:19.2%、9.8%、12.6%和16.2%,10~20 cm则依次为:5.6%、6.1%、2.5%和7.3%。大潮期,从低潮滩向高潮滩增加的盐度依次为0.18、0.13、0.10和0.09 ms·cm-1,增加的硫酸盐依次为0.32、0.21、0.16、0.13 mg·g-1。与小潮期相比,大潮期氧化还原电位(Eh)显著降低;土壤容重、pH、可溶性有机碳和可溶性氮在大小潮期间无明显差异。此外,在潮汐的半月周期内,低潮滩土壤比高潮滩有更高淹水频率和更长淹水时间,受潮水的影响更明显,大潮期低潮滩土壤含水量、盐度和硫酸盐的增加幅度大于高潮滩,低潮滩土壤Eh降低幅度则小于高潮滩。半月周期的潮汐可以显著影响滨海湿地的部分土壤理化性质,且不同潮位的土壤性质对潮汐的响应程度不同,进而可能会对湿地植物生长和相关生态过程起到重要的调控作用。

关键词: 潮汐的半月周期, 滨海湿地, 土壤理化性质, 崇明东滩, 互花米草

Abstract: As important hydrological features of coastal wetlands, periodic tides usually present two types of hydrological cycles on different time scales, semi-diurnal and semi-lunar tidal cycles (consisting of neap and spring tide periods (NTP and STP)). Therefore, tidal effects on soil physical and chemical properties of the vegetated zone may vary greatly between tidal cycles, because of different inundation frequencies and durations. Previous studies suggested that soil properties showed no significant change across the semi-diurnal cycle, probably because these work were mainly conducted in STP when soils were inundated or water-saturated most of the time. However, there has been no study on whether or how the semi-lunar tidal cycle affects soil properties in coastal wetlands. A field study was conducted in Chongming Dongtan wetland in the Yangtze River estuary to investigate temporal variations of soil physical and chemical properties along with the transition from NTP to STP in a semi-lunar tidal cycle and to explore possible underlying mechanisms of these variations. During the cycling of semi-lunar tides, periodic neap and spring tides significantly affected soil physical and chemical properties of coastal wetlands. A major change caused by the transition between NTP and STP was in soil water conditions. Soil moisture was significantly greater in STP than in NTP, because soil was over-saturated or submerged nearly all the time during STP due to frequent tidal inundation, especially in the low tide zone. Further analysis indicated that increased moisture in top soils in STP was greater than those in subsurface and deep soils. This suppressed the diffusion of O2 from atmosphere into soil, and existing soil O2 was rapidly consumed during STP. Therefore, soil Eh decreased dramatically with the transition from neap to spring tides. Regression analysis also showed that soil Eh was negatively correlated with moisture (R2 = 0.60, P < 0.0001). Furthermore, variations of soil Eh with that transition increased gradually from the low to the high tide zone, probably because the frequency of inundation by tidewater is greater and the duration is longer in the former zone. No significant change in soil pH values was observed between NTP and STP. Soil pH is an important factor in regulating the soil inorganic carbon (SIC) pool. SIC may account for more than 60% of soil total carbon in wetlands of the Yangtze River estuary. Periodic tidal inundation can maintain the alkaline environment (pH > 8.0) of soils, ensuring the stability of the SIC pool in the estuary. Soil conductivity and sulfate content were significantly greater in STP than in NTP because of the influence of tides, suggesting that tides transport substantial nutrients to coastal wetlands. Because of greater inundation frequency and longer duration, this exchange of salts was more efficient in the low tide zone than in the high tide zone. Consequently, compared with NTP, increase in soil conductivity and sulfate content in STP decreased gradually from the low to the high tide zone. Thus nutrient input via this mechanism may be vital in supporting high plant productivity in coastal wetlands. Positive effects of nutrient input on plant productivity were likely stronger in the low tide zone than in the high tide zone. This speculation may be confirmed by the results that plant traits of Spartina alterniflora such as aboveground plant biomass, plant height, and basal stem diameter were more advantageous in the low tide zone than in the high tide zone. In addition, soil bulk density, pH values, dissolved organic carbon (DOC) and dissolved nitrogen (DN) did not change significantly with the transition from NTP to STP, except at site S1 where only topsoil bulk density, DOC and DN were significantly lower in NTP than in STP. These findings indicate that semi-lunar tidal cycling can significantly impact soil physical and chemical properties in coastal wetlands, especially soil water, salinity and nutrient characteristics as well as redox environment, which may play important roles in regulating plant growth and relative ecological processes of coastal wetlands.

Key words: semi-lunar tidal cycle, coastal wetlands, soil physical and chemical properties, Chongming Dongtan, Spartina alterniflora

中图分类号: 

  • S728.5
[1] BARBIER E B,HACKER S D,KENNEDY C,et al.The value of estuarine and coastal ecosystem services[J].Ecological Monographs,2011,81:169-193.
[2] TOWNEND I,FLETCHER C,KNAPPEN M,et al.A review of salt marsh dynamics[J].Water and Environment Journal,2011,25:477-488.
[3] KVALE EP.The origin of neap-spring tidal cycles[J].Marine Geology,2006,235:5-18.
[4] 高君颖,王维奇,鄂 焱,等.潮汐对闽江河口湿地土壤理化特征的影响分析[J].湿地科学与管理,2011,7:48-52.
[5] TONG C,WANG W Q,ZENG C S,et al.Methane emission from a tidal marsh in the Min River estuary,southeast China[J].Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2010,45:506-516.
[6] 仝 川,姚 顺,王维奇,等.中国东南沿海短叶茳芏潮汐沼泽湿地甲烷动态[J].中国科学:地球科学,2012,42:723-735.
[7] 徐宏发,赵云龙.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社,2005.
[8] YANG S L,DING P X,CHEN S L.Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River,China[J].Geomorphology, 2001,38:167-180.
[9] WANG Q,AN S Q,MA Z J,et al.Invasive Spartina alterniflora:biology,ecology and management[J].Acta Phytotaxonomica Sinica,2006,44:559-588.
[10] LI B,LIAO C H,ZHANG X D,et al.Spartina alterniflora invasions in the Yangtze River estuary,China:an overview of current status and ecosystem effects[J].Ecological Engineering,2009,35:511-520.
[11] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
[12] SEYBOLD C A,MERSIE W,HUANG J Y,et al.Soil redox,pH,temperature,and water-table patterns of a freshwater tidal wetland[J].Wetlands,2002,22:149-158.
[13] DE MARS H,WASSEN M J.Redox potentials in relation to water levels in different mire types in the Netherlands and Poland[J].Plant Ecology,1999,140:41-51.
[14] TANG L,GAO Y,WANG C H,et al.How tidal regime and treatment timing influence the clipping frequency for controlling invasive Spartina alterniflora:implications for reducing management costs[J].Biological Invasions,2010,12:593-601.
[15] MENDOZA U N,DA CRUZ C C,MENEZES MP,et al.Flooding effects on phosphorus dynamics in an Amazonian mangrove forest,Northern Brazil[J].Plant and Soil,2012,353:107-121.
[16] MORRIS J T,HASKIN B.A 5-year record of aerial primary production and stand characteristics of Spartina alterniflora[J].Ecology,1990,71:2209-2217.
[17] TRILLA G G,DE MARCO S,MARCOVECCHIO J,et al.Net primary productivity of Spartina densiflora Brong in an SW Atlantic Coastal Salt Marsh[J].Estuaries and Coasts,2010,33:953-962.
[18] PENNINGS S C,GRANT M B,BERTNESS M D.Plant zonation in low-latitude salt marshes:disentangling the roles of flooding,salinity and competition[J].Journal of Ecology,2005,93:159-167.
[19] DAUSSE A,GARBUTT A,NORMAN L,et al.Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient[J].Estuarine Coastal and Shelf Science,2012,100:83-92.
[20] HINES M E,BANTA G T,GIBLIN AE,et al.Acetate concentrations and oxidation in salt-marsh sediments[J].Limnology and Oceanography, 1994,39:140-148.
[21] MOZDZER T J,KIRWAN M,MCGLATHERY K J,et al.Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora[J].Marine Ecology-Progress Series, 2011,433:43-52.
[22] EHRENFELD J G,RAVIT B,ELGERSMA K.Feedback in the plant-soil system[J].Annual Review of Environment and Resources,2005,30:75-115.
[23] PATRA S,刘丛强,李思亮,等.长江口溶解无机碳循环的地球化学研究[J].地球与环境,2010,38:409-413.
[24] CHENG X,LUO Y,CHEN J,et al.Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island[J].Soil Biology and Biochemistry,2006,38:3380-3386.
[25] 祖元刚,李 冉,王文杰,等.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报,2011,31:5207-5216.
[26] PILSKALN C H,PADUAN J B,CHAVEZ F P,et al.Carbon export and regeneration in the coastal upwelling system of Monterey Bay,central California[J].Journal of Marine Research,1996,54:1149-1178.
[27] BOUCHARD V,LEFEUVRE J C.Primary production and macro-detritus dynamics in a European salt marsh:carbon and nitrogen budgets[J].Aquatic Botany,2000,67:23-42.
[28] YAN Y,ZHAO B,CHEN J Q,et al.Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series[J].Global Change Biology,2008,14:1690-1702.
[29] TZORTZIOU M,NEALE P J,MEGONIGAL J P,et al.Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary[J].Marine Ecology-Progress Series,2011,426:41-56.
[30] WOLFF W J,VANEEDEN M J,LAMMENS E.Primary production and import of particulate organic matter on asalt marsh in the Netherlands[J].Netherlands Journal of Sea Research,1979,13:242-255.
[31] CHMURA G L,HUNG G A.Controls on salt marsh accretion:a test in salt marshes of Eastern Canada[J].Estuaries, 2004,27:70-81.
[32] NEUBAUER S C.Contributions of mineral and organic components to tidal freshwater marsh accretion[J].Estuarine Coastal and Shelf Science,2008,78:78-88.
[33] LOOMIS M J,CRAFT C B.Carbon sequestration and nutrient (nitrogen,phosphorus) accumulation in river-dominated tidal marshes,Georgia,USA[J].Soil Science Society of America Journal,2010,74:1028-1036.
[34] PENG R H,FANG C M,LI B,et al.Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze Estuary,China[J].Oecologia,2011,165:797-807.
[35] HOWES B L,DACEY J W H,GOEHRINGER D D.Factors controlling the growth form of Spartina alterniflora:feedbacks between aboveground production,sediment oxidation,nitrogen and salinity[J].Journal of Ecology,1986,74:881-898.
[36] 汪承焕.环境变异对崇明东滩优势盐沼植物生长、分布与种间竞争的影响[D].上海:复旦大学,2009.
[1] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[2] 李艳, 高艳娜, 戚志伟, 姜楠, 仲启铖, 姜姗, 王开运, 张超. 滨海芦苇湿地土壤微生物数量对长期模拟增温的响应[J]. 长江流域资源与环境, 2016, 25(11): 1738-1747.
[3] 周剑虹, 王江涛, 欧强, 仲启铖, 王开运, 姜楠, 李艳. 崇明东滩围垦区芦苇湿地土壤盐分动态研究[J]. 长江流域资源与环境, 2015, 24(09): 1545-1551.
[4] 凌成星, 张怀清, 林 辉. 利用混合水体指数模型(CIWI)提取滨海湿地水体的信息[J]. 长江流域资源与环境, 2010, 19(2): 152-.
[5] 况润元 周云轩 李行 田波. 崇明东滩鸟类生境适宜性空间模糊评价[J]. 长江流域资源与环境, 2009, 18(3): 229-233.
[6] 何小勤, 戴雪荣, 顾成军. 崇明东滩不同部位的季节性沉积研究[J]. 长江流域资源与环境, 2009, 18(2): 157-.
[7] 郑宗生, 周云轩, 刘志国, 田 波. 基于水动力模型及遥感水边线方法的潮滩高程反演[J]. 长江流域资源与环境, 2008, 17(5): 756-756.
[8] 李 生,张守攻,姚小华,任华东. 黔中石漠化地区不同土地利用方式对土壤环境的影响[J]. 长江流域资源与环境, 2008, 17(3): 384-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .