长江流域资源与环境 >> 2015, Vol. 24 >> Issue (12): 2054-2060.doi: 10.11870/cjlyzyyhj201512008
龚志军1, 李艳2, 张敏3, 蔡永久1, 薛庆举1, 许浩1
GONG Zhi-jun1, LI Yan2, ZHANG Min3, CAI Yong-jiu1, XUE Qing-ju1, XU Hao1
摘要: 作为湖泊底栖动物优势种类的霍甫水丝蚓在长江中下游湖泊分布广泛,在湖泊生态系统的能流和物流中占有十分重要的地位。为了了解霍甫水丝蚓在大型浅水湖泊中的种群动态规律、生活史和周年生产量等的状况,于2005年1~12月对太湖霍甫水丝蚓进行周年的研究,以期为了解太湖这一优势种类的生产力状况及合理利用这一资源提供理论依据。研究发现,2005年太湖霍甫水丝蚓年均密度和生物量分别为 3 274 ind./m2(0 ~13 800 ind./m2)和4.70 g/m2(0 ~29.15 g/m2),一般均在冬季达到高峰,空间分布上霍甫水丝蚓密度和生物量呈现出明显的差异性,在太湖北部梅梁湾和竺山湾及西部河口湖区分布较高,而在其它区域的现存量均较低。根据体长频数分布的周年变化特征,推测太湖霍甫水丝蚓约为一年三代,繁殖可能发生在3、7和11月份期间。2005年太湖霍甫水丝蚓年生产量为480.21 g·m-2·yr-1,P/B为14.17,与同类研究报道相比属于较高水平。分析表明太湖霍甫水丝蚓的高世代数导致其高P/B系数,而高周年生产量与其所处的营养水平相对较高有关,这对于太湖渔产潜力具有显著意义。
中图分类号:
[1] ANDERSON T J, STELZER R, DRECKTRAH H G, et al. Secondary production of Chironomidae in a large eutrophic lake: implications for lake sturgeon production[J]. Freshwater Science, 2012, 31(2): 365-378. [2] BENKE A C. Concepts and patterns of invertebrate production in running waters[J]. Verhandlungen des Internationen Verein Limnologie, 1993, 25: 15-38. [3] WALLACE J B,BENKE A C, LINGLE A H, et al. Trophic pathways of macroinvertebrate primary consumers in subtropical black water streams[J]. Archiv für Hydrobiologie, 1987, 74(Suppl.): 423-451. [4] BENKE A C. Secondary production of macroinvertebrates[M]//RICHARD HAUER F, LAMBERTI G A. Methods in Stream Ecology. London: Academic Press, 1996: 557-578. [5] BENKE A C, WALLACE J B. Trophic basis of production among riverine caddisflies: implications for food web analysis[J]. Ecology, 1997, 78(4): 1132-1145. [6] 秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理[M].北京:科学出版社,2004. [7] HAMILTON A L, HYNES H B N. On estimating annual production[J]. Limnology and Oceanography, 1969, 14(5): 771-782. [8] JOHNSON M G, BRINKHURST R O. Associations and species diversity in benthic macroinvertebrates of Bay of Quinte and Lake Ontario[J]. Journal of the Fisheries Research Board of Canada, 1971, 28(11): 1683-1697. [9] MACIOROWSKI A F, BENFIELD E F, HENDRICKS A C. Species composition, distribution, and abundance of oligochaetes in the Kanawha River, West Virginia[J]. Hydrobiologia, 1977, 54(1): 81-91. [10] LANG C. Factorial correspondence analysis of Oligochaeta communities according to eutrophication level[J]. Hydrobiologia, 1978, 57(3): 241-247. [11] RABURU P, MAVUTI K M, HARPER D M, et al. Population structure and secondary productivity of Limnodrilus hoffmeisteri (Claparede) and Branchiura sowerbyi Beddard in the profundal zone of Lake Naivasha, Kenya[J]. Hydrobiologia, 2002, 488(1): 153-161. [12] 黄漪平.太湖水环境及其污染控制[M].北京:科学出版社,2001. [13] 李 江,金相灿,姜 霞,等. 太湖不同营养水平湖区沉积物理化性质和磷的垂向变化[J].环境科学研究,2007,20(4):64-69. [14] ANLAUF K J, MOFFITT C M. Models of stream habitat characteristics associated with tubificid populations in an intermountain watershed[J]. Hydrobiologia, 2008, 603(1): 147-158. [15] RODRIGUEZ P, MARTINEZ-MADRID M, ARRATE J A, et al. Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata)[J]. Hydrobiologia, 2001, 463(1/3): 133-140. [16] BIRTWELL I K. Eco-physiological aspects of tubificids in the Thames Estuary[M]. London: King's College, 1974. [17] LAZIM M N, LEARNER M A. The influence of sediment composition and leaf litter on the distribution of tubificid worms (Oligochaeta)[J]. Oecologia, 1987, 72(1): 131-136. [18] MOSS B, TIMMS M. Predation, sediment stability and food availability as determinants of the benthic invertebrate fauna in two shallow lakes[J]. Hydrobiologia, 1989, 185(3): 249-257. [19] 龚志军,谢 平,唐汇涓,等.水体富营养化对大型底栖动物群落结构及多样性的影响[J].水生生物学报,2001,25(3):210-216. [20] VOLPERS M. NEUMANN D. Tolerance of two tubificid species (Tubifex tubifex and Limnodrilus hoffmeisteri) to hypoxic and sulfidic conditions in novel, long-term experiments[J]. Archiv für Hydrobiologie, 2005, 164(1): 13-38. [21] CAI Y J, JIANG J H, ZHANG L, et al. Simplification of macrozoobenthic assemblages related to anthropogenic eutrophication and cyanobacterial blooms in two large shallow subtropical lakes in China[J]. Aquatic Ecosystem Health & Management, 2012, 15(1): 81-91. [22] 胡忠军,孙月娟,刘其根,等.浙江千岛湖深水区大型底栖动物时空变化格局[J].湖泊科学,2010,22(2):265-271. [23] 刘曼红,马成学,左彦东,等.镜泊湖大型底栖动物群落调查[J].水生生态学报,2009,2(4):1-7. [24] 王银东,熊邦喜,杨学芬.武汉市南湖大型底栖动物的群落结构[J].湖泊科学,2005,17(4):327-333. [25] 王丑明,谢志才,宋立荣,等.滇池大型无脊椎动物的群落演变与成因分析[J].动物学研究,2011,32(2):212-221. [26] 高 峰,尹洪斌,胡维平,等.巢湖流域春季大型底栖动物群落生态特征及与环境因子关系[J].应用生态学报,2010,21(8):2132-2139. [27] BRINKHURST R O. Observations on the biology of lake-dwelling Tubificidae[J]. Archiv für Hydrobiologie, 1964, 60: 385-418. [28] 杞 桑.广州地区水栖寡毛类霍夫水丝蚓的繁殖周期[J].暨南大学学报(自然科学),1992,13(3):68-71. [29] KENNEDY C R. The life history of Limnodrilus hoffmeisteri Clap. (Oligochaeta: Tubificidae) and its adaptive significance[J]. Oikos, 1966, 17(2): 158-168. [30] LAZIM M N, LEARNER M A. The life-cycle and productivity of Tibifex tubifex (Oligochaeta; Tibificidae) in the Moat-Feeder Stream, Cardiff, South Wales[J]. Ecography, 1986, 9(3): 185-192. [31] POTTER D W B. LEARNER M A. A study of the benthic macroinvertebrates of a shallow eutrophic reservoir in South Wales with emphasis on the Chironomidae (Diptera); their life-histories and production[J]. Archiv für Hydrobiologie, 1974, 74: 186-226. [32] 闫云君,梁彦龄.草型湖泊与藻型湖泊大型底栖动物生产力的比较[J].湖泊科学,2004,16(1):81-84. [33] WATERS T F. Secondary production in inland waters[J]. Advances in Ecological Research, 1977, 10: 91-164. [34] BENKE A C. Secondary production of aquatic insects[M]//RESH V H, ROSENBERG D M. The ecology of aquatic insects. New York: Praeger Publishers, 1984: 289-322. [35] TEAL J M. Community metabolism in a temperate cold spring[J]. Ecological Monographs, 1957, 27(3): 283-302. [36] LIANG Y L. Annual production of Branchiura sowerbyi (Oligochaeta: Tubificidae) in the Donghu Lake, Wuhan, China[J]. Chinese Journal of Oceanology and Limnology, 1984, 2(1): 102-108. [37] MARTINET F, JUGET J, RIERA P. Carbon fluxes across water, sediment and benthos along a gradient of disturbance intensity: adaptive responses of the sediment feeders[J]. Archiv für Hydrobiologie, 1993, 127(1): 39-56. [38] LAFONT M. Production of Tubificidae in the littoral zone of Lake Léman near Thonon-les-Bains: a methodological approach[J]. Hydrobiologia, 1987, 155(1): 179-187. |
[1] | 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914. |
[2] | 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453. |
[3] | 陈江龙, 田柳, 赵酉辰. 基于ILBM的太湖饮用水源地管理研究——以苏州市为例[J]. 长江流域资源与环境, 2016, 25(12): 1815-1823. |
[4] | 黄锐, 赵佳玉, 肖薇, 刘寿东, 李汉超, 徐敬争, 胡诚, 肖启涛. 太湖辐射和能量收支的时间变化特征[J]. 长江流域资源与环境, 2016, 25(05): 733-742. |
[5] | 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452. |
[6] | 项小燕, 吴甘霖, 段仁燕, 王志高, 张中信, 王广艳, 张小平. 大别山五针松种群结构及动态研究[J]. 长江流域资源与环境, 2016, 25(01): 55-62. |
[7] | 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155. |
[8] | 胡开明, 范恩卓. 西太湖区域水环境容量分配及水质可控目标研究[J]. 长江流域资源与环境, 2015, 24(08): 1373-1380. |
[9] | 尹义星, 许有鹏, 陈莹. 太湖最高水位及其与气候变化、人类活动的关系[J]. 长江流域资源与环境, 2009, 18(7): 609-. |
[10] | 朱广伟. 太湖水质的时空分异特征及其与水华的关系[J]. 长江流域资源与环境, 2009, 18(5): 439-. |
[11] | 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33-. |
[12] | 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546-546. |
[13] | 王 芳. 太湖主体湖区对梅梁湾藻类影响定量化研究[J]. 长江流域资源与环境, 2008, 17(2): 275-275. |
[14] | 荚德安,陈金林,王世红,赵冬青. 太湖流域农田生态系统管理与非点源污染控制[J]. 长江流域资源与环境, 2007, 16(4): 489-489. |
[15] | 刘云霞,|陈 爽|彭立华,,范成新. 基于格网的太湖生态环境质量空间评价[J]. 长江流域资源与环境, 2007, 16(4): 494-494. |
|