长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 476-485.doi: 10.11870/cjlyzyyhj201603015

• 生态环境 • 上一篇    下一篇

金沙江头塘小流域人工林有机碳及其剖面分布特征

和丽萍, 孟广涛, 李贵祥, 李品荣, 柴勇   

  1. 云南省林业科学院, 云南 昆明 650203
  • 收稿日期:2015-06-05 修回日期:2015-12-23 出版日期:2016-03-20
  • 通讯作者: 孟广涛 E-mail:menggt2001@163.com
  • 作者简介:和丽萍(1972~),女,博士,副研究员,主要研究方向为土壤学. E-mail: kmhlp@sina.com
  • 基金资助:
    "十二五"农村领域国家科技计划专题(2012BAD22B0102)

SOIL ORGANIC CARBON AND ITS DISTRIBUTION CHARACTERISTICS IN THE SOIL PROFILE UNDER DIFFERENT VEGETATION RECOVERY MODES IN TOUTANG SMALL WATERSHED OF JINSHA RIVER

HE Li-ping, MENG Guang-tao, LI Gui-xiang, LI Pin-rong, CHAI Yong   

  1. Yunnan Academy of Forestry, Kunming 650203, China
  • Received:2015-06-05 Revised:2015-12-23 Online:2016-03-20
  • Supported by:
    The National Scientific and Technological Special Project for Rural Areas Duringthe Twelfth Five-year Plan Period (2012 BAD22B0102)

摘要: 采用野外调查、室内分析并结合相关的方法,研究探讨了金沙江头塘小流域7种不同植被恢复人工林土壤剖面层次有机碳(SOC)含量、有机碳密度(SOCD)和有机碳储量及分布特征。结果表明,不同林分类型及土层间土壤SOC含量存在明显差异:就整个土层(0~100 cm)而言,7种林分土壤SOC平均含量介于6.46±1.67~24.95±2.32 g·kg-1,大小依次为柳杉林 > 旱冬瓜林 > 圆柏林 > 栓皮栎林 > 圣诞树林 > 墨西哥林 > 藏柏林,且差异显著(p < 0.05);7种林分土壤SOC含量均出现表聚现象,从表层到深层都呈现递减趋势,且具有一定的规律性;7种林分土壤容重总体上均表现为随土层深度的增加逐渐增加,土壤容重表现为:柳杉林 > 栓皮栎林 > 圣诞树林 > 圆柏林 > 旱冬瓜林 > 墨西哥柏林、藏柏林;7种林分土壤有机碳密度垂直分布和土壤有机碳含量垂直分布特征一致,随土层深度增加土壤有机碳密度减少,以表土10 cm的土壤有机碳密度最大;有机碳储量均随着土层加深所占比例逐渐降低,同时土壤有机碳主要集中于土层0~40 cm内,分别占总有机碳的65.60%(圣诞树林)、63.16%(旱冬瓜林)、54.41%(墨西哥柏林)、58.56%(圆柏林)、62.96%(藏柏林)、61.70%(栓皮栎林)和56.37%(柳杉林),0~40 cm土层土壤有机碳占总有机碳的百分比均达到50%以上。

关键词: 土壤有机碳, 碳储量, 容重, 垂直分布, 林分类型, 金沙江流域

Abstract: Field investigation, laboratory analysis and related methods were used to investigate the level of soil organic carbon (SOC) content, organic carbon and organic carbon storage and density distribution of the vegetation under seven different recovery modes in a small watershed of the Jinsha River. The results showed that significant differences exist between the different forest types and soil layers. in terms of the whole soil (0-100cm), SOC of the seven forest typesranged between the average content of 6.46±1.67-24.95±2.32 g·kg-1, with an order of Cryptomeria fortunei forest > Alnus cremastogyne burk forest > Cupressus duclouxiana forest > Quercus variabilis forest > Acacia dealbata forest > Cupressus lusitanica forest > Cupressus torulosa forest, and the difference was significant (p < 0.05); SOC content of the soil in the 7 stands presented a table poly phenomenon, from the surface to the deep soil there was a decreasing trend, and with some regularity; seven kinds of soil bulk density increased gradually with the increase of soil depth on the whole, soil bulk density showed: Cryptomeria fortunei forest > Quercus variabilis forest > Acacia dealbata forest > Cupressus duclouxiana forest > Alnus cremastogyne burk forest > Cupressus lusitanica forest, Cupressus torulosa forest; consistent seven kinds of stands vertical distribution of soil organic carbon density and vertical distribution of soil organic carbon content characteristics, soil depth increases with soil organic carbon density reduced to topsoil 10 cm of soil organic carbon density maximu; organic carbon reserves were as soil depth percentage decreased, while soil organic carbon was mainly concentrated in the 0-40 cm soil, accounting for 65.60% of total organic carbon (Acacia dealbata forest), 63.16% (Alnus cremastogyne burk forest), 54.41% (Cupressus lusitanica forest), 58.56% (Cupressus duclouxiana forest), 62.96% (Cupressus torulosa forest), 61.70% (Quercus variabilis forest) and 56.37% (Cryptomeria fortunei forest),SOC of the 0-40 cm soil layer accounted for more than 50% of the total.

Key words: soil organic carbon, carbon storage, bulk density, vertical distribution, forest types, Jinsha River

中图分类号: 

  • S714.5
[1] SCHLESINGER W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature, 1990, 348(6298):232-234.
[2] RAICH J W, TUFEKCIOGUL A. Vegetation and soil respiration:Correlations and controls[J]. Biogeochemistry, 2000, 48(1):71-90.
[3] RUSTAD L E, HUNTINGTON T G, BOONE R G. Controls on soil respiration:Implications for climate change[J]. Biogeochemistry, 2000, 48(1):1-6.
[4] 周成虎, 周启鸣, 王绍强. 中国土壤有机碳库空间分布的分析与估算[J]. Ambio-人类环境杂志, 2003, 32(1):6-12.[ZHOU C H, ZHOU Q M, WANG S Q. Estimating and analyzing the spatial distribution of soil organic carbon in China[J]. Ambio-A Journal of the Human Environment, 2003, 32(1):6-12.]
[5] 杨斌, 周洪昌, 王庆华, 等. 头塘小流域不同立地类型防护林树种对比试验[J]. 云南林业科技, 1999(2):17-23.[YANG B, ZHOU H C, WANG Q H, et al. Contrast test on protective species of different site types in Toutang small watershed[J]. Yunnan Forestry Science and Technology, 1999(2):17-23.]
[6] 彭明俊, 郎南军, 温绍龙, 等. 金沙江流域不同林分类型的土壤特性及其水源涵养功能研究[J]. 水土保持学报, 2005, 19(6):106-109.[PENG M J, LANG N J, WEN S L, et al. Soil properties and water conservation function of different forest types in Jinshajiang River watershed[J]. Journal of Soil and Water Conservation, 2005, 19(6):106-109.]
[7] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
[8] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11):2875-2882.[YANG J Y, WANG C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11):2875-2882.]
[9] FANG J Y, LIU G H, XU S L. Soil carbon pool in China and its global significance[J]. Journal of Environmental Sciences, 1996, 8(2):249-254.
[10] POST W M, IZAURRALDE R C, MANN L K. Monitoring and verifying changes of organic carbon in soil[J]. Climatic Change, 2001, 51(1):73-99.
[11] 丁访军, 潘忠松, 周凤娇, 等. 黔中喀斯特地区3种林型土壤有机碳含量及垂直分布特征[J]. 水土保持学报, 2012, 26(1):161-164, 169.[DING F J, PAN Z S, ZHOU F J, et al. Organic carbon contents and vertical distribution characteristics of the soil in three forest types of the Karst regions in central Guizhou Province[J]. Journal of Soil and Water Conservation, 2012, 26(1):161-164, 169.]
[12] VÁSQUEZ-MURRIETA M S, MIGUELES-GARDUÑO I, FRANCO-HERNÁNDEZ O, et al. C and N mineralization and microbial biomass in heavy-metal contaminated soil[J]. European Journal of Soil Biology, 2006, 42(2):89-98.
[13] 周萍, 刘国彬, 侯喜禄. 黄土丘陵区侵蚀环境不同坡面及坡位土壤理化特征研究[J]. 水土保持学报, 2008, 22(1):7-12.[ZHOU P, LIU G B, HOU X L. Study on soil physical and nutrients properties of different slope aspects and positions in eroded loess hilly region[J]. Journal of Soil and Water Conservation, 2008, 22(1):7-12.]
[14] 梁启鹏, 余新晓, 庞卓, 等. 不同林分土壤有机碳密度研究[J]. 生态环境学报, 2010, 19(4):889-893.[LIANG Q P, YU X X, PANG Z, et al. Study on soil organic carbon density of different forest types[J]. Ecology and Environmental Sciences, 2010, 19(4):889-893.]
[15] 黄从德, 张健, 杨万勤, 等. 四川森林土壤有机碳储量的空间分布特征[J]. 生态学报, 2009, 29(3):1217-1225.[HUANG C D, ZHANG J, YANG W Q, et al. Spatial distribution characteristics of forest soil organic carbon stock in Sichuan Province[J]. Acta Ecologica Sinica, 2009, 29(3):1217-1225.]
[16] 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1):99-105.[ZHOU L, LI B G, ZHOU G S. Advances in controlling factors of soil organic carbon[J]. Advance in Earth Sciences, 2005, 20(1):99-105.]
[17] 李金芬, 程积民, 刘伟, 等. 黄土高原云雾山草地土壤有机碳、全氮分布特征[J]. 草地学报, 2010, 18(5):661-668.[LI J F, CHENG J M, LIU W, et al. Distribution of soil organic carbon and total nitrogen of grassland in Yunwu mountain of loess plateau[J]. Acta Agrestia Sinica, 2010, 18(5):661-668.]
[18] 赵锦梅, 高超, 张德罡. 祁连山东段不同退化高寒草甸土壤有机碳密度研究[J]. 草地学报, 2010, 18(1):21-25.[ZHAO J M, GAO C, ZHANG D G. Study on the soil organic carbon density of alpine meadow with different degradation degrees in Eastern Qilian Mountains[J]. Acta Agrestia Sinica, 2010, 18(1):21-25.]
[19] 刘伟, 程积民, 陈芙蓉, 等. 黄土高原中部草地土壤有机碳密度特征及碳储量[J]. 草地学报, 2011, 19(3):425-431.[LIU W, CHENG J M, CHEN F R, et al. Characteristic of organic carbon density and organic carbon storage in the natural grassland of center loess plateau[J]. Acta Agrestia Sinica, 2011, 19(3):425-431.]
[20] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2):151-163.
[21] 武小钢, 郭晋平, 杨秀云, 等. 芦芽山典型植被土壤有机碳剖面分布特征及碳储量[J]. 生态学报, 2011, 31(11):3009-3019.[WU X G, GUO J P, YANG X Y, et al. Soil organic carbon storage and profile inventory in the different vegetation types of Luya Mountain[J]. Acta Ecologica Sinica, 2011, 31(11):3009-3019.]
[22] 张鹏, 张涛, 陈年来. 祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J]. 应用生态学报, 2009, 20(3):518-524.[ZHANG P, ZHANG T, CHEN N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(3):518-524.]
[23] 谢涛, 王明慧, 郑阿宝, 等. 苏北沿海不同林龄杨树林土壤活性有机碳特征[J]. 生态学杂志, 2012, 31(1):51-58.[XIE T, WANG M H, ZHENG A B, et al. Characteristics of soil labile organic carbon in poplar plantations of different ages in coastal area of North Jiangsu[J]. Chinese Journal of Ecology, 2012, 31(1):51-58.]
[24] 王淑平, 周广胜, 高素华, 等. 中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J]. 植物生态学报, 2003, 27(6):780-786.[WANG S P, ZHOU G S, GAO S H, et al. Distribution of soil labile carbon along the northeast China transect (NECT) and its response to climatic change[J]. Acta Phytoecologica Sinica, 2003, 27(6):780-786.]
[1] 张文婷. 江西省不同地貌单元耕地土壤有机碳空间变异的尺度效应[J]. 长江流域资源与环境, 2018, 27(11): 2619-2628.
[2] 刘海晨, 丁明月, 江文华, 陈勇航, 张华, 杜豪杰, 李嘉栋, 邱靖涵. 从气溶胶微物理属性分析冬季重庆地区霾的垂直分布特征[J]. 长江流域资源与环境, 2017, 26(04): 641-648.
[3] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[4] 田多松, 傅碧天, 吕永鹏, 杨凯, 车越. 基于SD和CLUE-S模型的区域土地利用变化对土壤有机碳储量影响研究[J]. 长江流域资源与环境, 2016, 25(04): 613-620.
[5] 施鹏程, 彭道黎, 黄国胜, 王雪军, 曾伟生, 马炜, 叶林妹. 三峡库区乔木林生物量和碳储量的估算[J]. 长江流域资源与环境, 2015, 24(06): 1052-1059.
[6] 夏既胜, 杨树华, 万晔, 王玉朝, 曾洪云, 文列金. 基于GIS的金沙江流域(云南段)生态潜力空间分布特征[J]. 长江流域资源与环境, 2009, 18(9): 865-.
[7] 许峰, 祁士华, 高媛, 邢新丽. 绵阳市代表性点位土壤多环芳烃剖面分布特征[J]. 长江流域资源与环境, 2009, 18(2): 192-.
[8] 夏既胜,杨树华,张林艳,王玉朝,赵筱青,谭志卫. 金沙江流域(云南部分)生态潜力及其变化[J]. 长江流域资源与环境, 2008, 17(5): 798-798.
[9] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51-51.
[10] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51-51.
[11] 陈亮中,谢宝元,肖文发,黄志霖. 三峡库区主要森林植被类型土壤有机碳贮量研究[J]. 长江流域资源与环境, 2007, 16(5): 640-640.
[12] 唐国勇,彭佩钦,苏以荣,童成立,吴金水,黄伟生,朱奇宏. 洞庭湖区不同利用方式下农田土壤有机碳含量特征[J]. 长江流域资源与环境, 2006, 15(2): 219-222.
[13] 芮雯奕,周 博,张卫建. 长江三角洲水田保护性耕作制度的碳收集效应估算[J]. 长江流域资源与环境, 2006, 15(2): 207-212.
[14] 田 昆, ,莫剑锋,陆 梅,常凤来,杨永兴. 人为活动干扰对纳帕海湿地环境影响的研究[J]. 长江流域资源与环境, 2004, 13(3): 292-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .
[2] 王宜虎. 江苏沿江各市工业绿色化程度的模糊评价[J]. 长江流域资源与环境, 2008, 17(2): 170 .
[3] 吴 威,曹有挥,曹卫东,徐 建,王 玥,. 区域高速公路网络构建对可达性空间格局的影响——以安徽沿江地区为实证 [J]. 长江流域资源与环境, 2007, 16(6): 726 .
[4] 胥勤勉,杨达源,董 杰,周 彬. 滇池水环境治理的“调水”“活水”工程[J]. 长江流域资源与环境, 2006, 15(1): 116 -119 .
[5] 倪绍祥. 长三角地区经济一体化与土地资源管理[J]. 长江流域资源与环境, 2004, 13(6): 536 -540 .
[6] 黄朝禧,赵绪福,韩桐魁. 富水水库消落区土地开发试验及其效果[J]. 长江流域资源与环境, 2005, 14(4): 435 -439 .
[7] 刘 伟. 长江经济带区域经济差异分析[J]. 长江流域资源与环境, 2006, 15(2): 131 -135 .
[8] 靳晓莉,高俊峰,赵广举. 太湖流域近20年社会经济发展对水环境影响及发展趋势[J]. 长江流域资源与环境, 2006, 15(3): 298 -302 .
[9] 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2): 116 .
[10] 储胜金,许 刚. 浙北山区土地利用与生态保护的冲突与协调机制研究冲突与协调机制研究——以天目山自然保护区为例[J]. 长江流域资源与环境, 2004, 13(1): 24 -29 .