长江流域资源与环境 >> 2016, Vol. 25 >> Issue (05): 822-829.doi: 10.11870/cjlyzyyhj201605016

• 生态环境 • 上一篇    下一篇

竺山湾流域河湖系统污染物总量控制研究

秦文浩1, 夏琨2, 叶晓东1, 纪风强3   

  1. 1. 宁波市规划设计研究院, 浙江 宁波 315040;
    2. 南京大学环境规划设计研究院有限公司, 江苏 南京 210093;
    3. 天津城建设计院有限公司, 天津 300073
  • 收稿日期:2015-08-31 修回日期:2015-12-14 出版日期:2016-05-20
  • 通讯作者: 叶晓东 E-mail:809027582@qq.com
  • 作者简介:秦文浩(1990~),男,硕士研究生,主要从事环境规划与评价.E-mail:a619016589@163.com
  • 基金资助:
    国家水体污染控制与治理科技重大专项(2012ZX07506-002、2012ZX07101-001)

STUDY ON TOTAL AMOUNT CONTROL IN A RIVER-LAKE SYSTEM OF ZHUSHAN BAY WATERSHED

QIN Wen-hao1, XIA Kun2, YE Xiao-dong1, JI Feng-qiang3   

  1. 1. Ningbo Urban Planning and Design Institute, Ningbo 315040, China;
    2. Academy of Environmental Planning and Design, Nanjing University, Nanjing 210093, China;
    3. Tianjin Urban Construction Design Institute Co.Ltd., Tianjin 300073, China
  • Received:2015-08-31 Revised:2015-12-14 Online:2016-05-20
  • Supported by:
    Major Science and Technology Program for WaterPollution Control and Treatment of China (No.2012ZX07506-002 & No.2012ZX07101-001)

摘要: 复杂河湖系统的总量控制需考虑河湖双重控制目标,以太湖西北部竺山湾流域为研究对象,运用排污系数法计算了区域内的入河污染负荷;构建了一维河网和二维湖体水环境数学模型,对水环境数学模型进行了率定;基于多重目标的河网水环境容量计算方法,计算了河网水环境容量,并分配至各控制单元;定量分析了各控制单元各污染物总量达标情况下的削减量及削减率。结果表明:竺山湾流域COD削减量为834.4 t,削减率为13.8%;氨氮削减量为226.1 t,削减率为36.5%;总氮削减量为724.8 t,削减率为55.2%;总磷削减量为108.9 t,削减率为73.4%。论文成果对于开展竺山湾流域污染物总量控制和水环境保护具有重要指导意义,同时为类似的河湖系统水污染物总量控制提供借鉴。

关键词: 河湖系统, 水环境容量, 总量控制, 污染负荷, 削减

Abstract: Total amount control for a complicated river-lake system should consider water quality objective of rivers and lakes simultaneously. Zhushan Bay watershed to the northwest of Lake Taihu was selected as the research area. Pollution loads discharged into rivers were estimated by the discharge coefficient approaches. Water environmental models for the One-dimensional river network and two-dimensional lake were constructed and calibrated. Water environmental capacity of river network was calculated based on the calculation method of multi-objectives, and assigned to each control unit. The reduction amount and reduction rate under the condition of total amount of each control unit reach water quality standards were quantitatively analyzed. The results showed that the reduction amount of COD, NH3-N, TN and TP is 834.4 tons, 226.1 tons, 724.8 tons and 108.9 tons, respectively, and the reduction rate is 13.8%, 36.5%, 55.2% and 73.4%, respectively. This paper played a guiding role for total amount control and water environmental protection in the study area, and more importantly, provided important reference for total amount control in a complicated river-lake system.

Key words: River-lake system, Water environmental capacity (WEC), Total amount control, Pollution load

[1] 张修宇, 陈海涛. 我国水污染物总量控制研究现状[J]. 华北水利水电学院学报, 2011, 32(5):142-145. [ZHANG X Y, CHEN H T. Current research situations of water pollutant total control in China[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2011, 32(5):142-145.]
[2] 马中, DUDEK D, 吴健, 等. 论总量控制与排污权交易[J]. 中国环境科学, 2002, 22(1):89-92. [MA Z, DUDEK D, WU J, et al. Discussion on total emissions control and emission trading[J]. China Environmental Science, 2002, 22(1):89-92.]
[3] 李家才. 总量控制与太湖流域水污染治理——《太湖流域水环境综合治理总体方案》述评[J]. 环境污染与防治, 2010, 32(4):96-100. [LI J C. Loading cap and water pollution control in Taihu Lake basin:a review of General Plan about Comprehensive Treatment of Ambient Water in Taihu Lake Basin[J]. Environmental Pollution and Control, 2010, 32(4):96-100.]
[4] 刘文琨, 肖伟华, 黄介生, 等. 水污染物总量控制研究进展及问题分析[J]. 中国农村水利水电, 2011(8):9-12. [LIU W K, XIAO W H, HUANG J S, et al. The total amount control research progress and problem analysis of water pollution[J]. China Rural Water and Hydropower, 2011(8):9-12.]
[5] 包存宽, 张敏, 尚金城. 流域水污染物排放总量控制研究——以吉林省松花江流域为例[J]. 地理科学, 2000, 20(1):61-64. [BAO C K, ZHANG M, SHANG J C. Research on total quantity control of pollutants emission in the Songhua River Basin of Jilin Province[J]. Scientia Geographica Sinica, 2000, 20(1):61-64.]
[6] 郑丽波, 史利江, 王莹. 基于汇水单元的甬江流域水污染物排放总量控制研究[J]. 环境科学与管理. 2009, 34(5):14-17. [ZHENG L B, SHI L J, WANG Y. Research on control total amount of COD in Yongjiang River Basin based on water control cell[J]. Environmental Science and Management, 2009, 34(5):14-17.]
[7] ZHANG R B, QIAN X, YUAN X C, et al. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management[J]. International Journal of Environmental Research and Public Health, 2012, 9(12):4504-4521.
[8] 余明勇, 刘婧婧. 长河黄冈城区河段水环境容量与污染物总量控制研究[J]. 水电能源科学, 2013, 31(12):33-37. [YU M Y, LIU J J. Study on water environmental capacity and total quantity control of pollutants of Changhe River in urban area of Huanggang[J]. Water Resources and Power, 2013, 31(12):33-37.]
[9] 范丽丽, 沙海飞, 逄勇. 太湖湖体水环境容量计算[J]. 湖泊科学, 2012, 24(5):693-697. [FAN L L, SHA H F, PANG Y. Water environmental capacity of Lake Taihu[J]. Journal of Lake Sciences, 2012, 24(5):693-697.]
[10] LEE C S, WEN C G. River assimilative capacity analysis via fuzzy linear programming[J]. Fuzzy Sets and Systems, 1996, 79(2):191-201.
[11] 王华, 逄勇, 丁玲. 滨江水体水环境容量计算研究[J]. 环境科学学报, 2007, 27(12):2067-2073. [WANG H, PANG Y, DING L. Calculation of the water environment capacity for a waterfront body[J]. Acta Scientiae Circumstantiae, 2007, 27(12):2067-2073.]
[12] 房睿. 玛纳斯河纳污能力及排污总量控制分析[J]. 水资源与水工程学报, 2013, 24(6):200-202. [FANG R. Analysis of assimilative capacity and total control of sewage discharge in Manas River[J]. Journal of Water Resources and Water Engineering, 2013, 24(6):200-202.]
[13] 胡开明, 逄勇, 王华, 等. 大型浅水湖泊水环境容量计算研究[J]. 水力发电学报, 2011, 30(4):135-141. [HU K M, PANG Y, WANG H, et al. Calculation of water environment capacity for a large shallow lake[J]. Journal of Hydroelectric Engineering, 2011, 30(4):135-141.]
[14] 谢阳村, 赵越, 徐敏, 等. 石头口门水库流域水污染物排放总量控制目标的确定方法研究[J]. 环境污染与防治, 2015, 37(3):98-101. [XIE Y C, ZHAO Y, XU M, et al. Study on determination method of the goal of total amount control of Stone Kou Men basin[J]. Environmental Pollution and Control, 2015, 37(3):98-101.]
[15] ZHANG Y M, ZHANG Y C, GAO Y X, et al. Water pollution control technology and strategy for river-lake systems:a case study in Gehu Lake and Taige Canal[J]. Ecotoxicology, 2011, 20(5):1154-1159.
[16] WANG H, JI F Q, ZHOU Y Y, et al. Water pollutant control for a river-lake region to the Northwest of Lake Taihu[J]. Applied Mechanics and Materials, 2014, 665:420-425.
[17] WANG H, ZHOU Y Y, TANG Y, et al. Fluctuation of the water environmental carrying capacity in a huge river-connected lake[J]. International Journal of Environmental Research and Public Health, 2015, 12(4):3564-3578.
[18] 边博, 夏明芳, 王志良, 等. 太湖流域重污染区主要水污染物总量控制[J]. 湖泊科学, 2012, 24(3):327-333. [BIAN B, XIA M F, WANG Z L, et al. Total amount control of main water pollutants in seriously polluted area of Taihu Basin[J]. Journal of Lake Sciences, 2012, 24(3):327-333.]
[19] 李宗礼, 郝秀平, 王中根, 等. 河湖水系连通分类体系探讨[J]. 自然资源学报, 2011, 26(11):1975-1982. [LI Z L, HAO X P, WANG Z G, et al. Exploration on classification of interconnected river system network[J]. Journal of Natural Resources, 2011, 26(11):1975-1982.]
[20] 姚亚洲. 盐城经济开发区东区污水排放方案研究[D]. 南京:河海大学硕士学位论文, 2007. [YAO Y Z. Study on the wastewater discharging schemes in the east region of Yancheng economic development zone[D]. Nanjing:Master Dissertation of Hohai University, 2007.]
[21] 胡开明, 逄勇, 谢飞, 等. 直湖港、武进港关闸对太湖竺山湖水环境影响[J]. 湖泊科学, 2010, 22(6):923-929. [HU K M, PANG Y, XIE F, et al. Effects of Zhihugang and Wujingang closing sluices on water environment of Lake Zhushan, Lake Taihu[J]. Journal of Lake Sciences, 2010, 22(6):923-929.]
[1] 黄美玲, 夏颖, 范先鹏, 黄敏, 吴茂前, 刘冬碧, 张富林. 湖北省畜禽养殖污染现状及总量控制[J]. 长江流域资源与环境, 2017, 26(02): 209-219.
[2] 王生愿, 桂发二, 方纬. 负荷历时曲线法在梁子湖流域污染容量总量控制中的应用[J]. 长江流域资源与环境, 2016, 25(05): 845-850.
[3] 匡武, 芮明, 张彦辉, 严云志, 吴添天. 巢湖湖滨带生态恢复工程对暴雨径流氮磷削减效果研究[J]. 长江流域资源与环境, 2015, 24(11): 1906-1912.
[4] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[5] 郑丽波,史利江, 俞立中, 贾丽, 王莹. 水污染控制规划的GIS辅助技术研究[J]. 长江流域资源与环境, 2009, 18(2): 175-.
[6] 侯伟丽. 我国技术变迁对环境影响的计量分析[J]. 长江流域资源与环境, 2009, 18(10): 903-.
[7] 梁常德,龙天渝,李继承,刘腊美. 三峡库区非点源氮磷负荷研究[J]. 长江流域资源与环境, 2007, 16(1): 26-30.
[8] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷预测[J]. 长江流域资源与环境, 2006, 15(1): 97-106.
[9] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅰ)——蓄水前污染负荷现状[J]. 长江流域资源与环境, 2005, 14(5): 611-622.
[10] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605-610.
[11] 于忠华,黄文钰, 舒金华. 沿江大开发背景下长江江苏段水环境污染负荷趋势[J]. 长江流域资源与环境, 2005, 14(3): 348-348.
[12] 周宏伟,朱继业,王腊春,窦贻俭. 水污染物排放总量控制方法研究——以无锡城北地区为例[J]. 长江流域资源与环境, 2004, 13(1): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗专溪,张 远,郑丙辉,富 国,陆兆华. 三峡水库蓄水初期水生态环境特征分析[J]. 长江流域资源与环境, 2005, 14(6): 781 -784 .
[2] 陈 诚,陈 雯 . 盐城市沿海的适宜开发空间选择研究[J]. 长江流域资源与环境, 2008, 17(5): 667 .
[3] 李晓文,方精云,朴世龙. 上海城市土地利用形成、变化及其空间作用机制[J]. 长江流域资源与环境, 2006, 15(1): 34 -40 .
[4] 李加林,许继琴,童亿勤,杨晓平,张殿发. 杭州湾南岸滨海平原土地利用/覆被空间格局变化分析[J]. 长江流域资源与环境, 2005, 14(6): 709 -713 .
[5] 李玉辉,李忠德,张丹丹,李兆林 ,周顺吉. 石林风景名胜区对乡村经济发展的影响[J]. 长江流域资源与环境, 2004, 13(1): 18 -23 .
[6] 黄真理. 国内外大型水电工程生态环境监测与保护[J]. 长江流域资源与环境, 2004, 13(2): 101 -108 .
[7] 杨志荣,吴次芳, 靳相木, 姚秋萍. 基于DEA模型的城市用地经济效益比较研究[J]. 长江流域资源与环境, 2009, 18(1): 14 .
[8] 吴虹月,包维楷,王 安. 外来种入侵对乡土生物多样性的影响机制[J]. 长江流域资源与环境, 2004, 13(1): 40 -46 .
[9] 徐新良, 庄大方, 贾绍凤, 胡云峰. GIS环境下基于DEM的中国流域自动提取方法[J]. 长江流域资源与环境, 2004, 13(4): 343 -348 .
[10] 徐宪立,张科利,刘 雯,孔亚平, 陈济丁. 青藏公路路堤边坡水土保持措施及效益分析[J]. 长江流域资源与环境, 2008, 17(4): 619 .