长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1824-1831.doi: 10.11870/cjlyzyyhj201612005

• 区域可持续发展 • 上一篇    下一篇

武汉城市圈土地利用空间关联的碳排放效率及其收敛性分析

崔玮1,3, 苗建军2, 邹伟3   

  1. 1. 江苏大学财经学院, 江苏 镇江 212013;
    2. 南京航空航天大学经济管理学院, 江苏 南京 211100;
    3. 南京农业大学公共管理学院, 江苏 南京 210095
  • 收稿日期:2016-04-21 修回日期:2016-09-12 出版日期:2016-12-20
  • 通讯作者: 邹伟,E-mail:njauzw@126.com E-mail:njauzw@126.com
  • 作者简介:崔玮(1983~),男,博士,讲师,主要研究方向土地利用效率.E-mail:mansircui@ujs.edu.cn
  • 基金资助:
    国家自然科学基金(71173112、71503105、171401051);国家社会科学基金(16BGL210);国家教育部项目(15YJA790046、15YJA630017);江苏大学高级技术人才科研启动项目(15JDG004);江苏省高校自然科学基金(15KJD610001)

CARBON EMISSION EFFICIENCY OF SPATIAL ASSOCIATION AND ITS CONVERGENCE OF LAND USE IN WUHAN URBAN AGGLOMERATION

CUI Wei1,3, MIAO Jian-jun2, ZOU Wei3   

  1. 1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013, China;
    2. Nanjing University of Aeronautics & Astronautics, Nanjing 211100, China;
    3. School of Public Administration, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
  • Received:2016-04-21 Revised:2016-09-12 Online:2016-12-20
  • Supported by:
    National Natural Science Foundation of China(71173112、71503105、171401051);National Social Science Fund of China(16BGL210);The Ministry of Education Project(15YJA790046、15YJA630017);Scientific Research Project of Senior Technical Personnel of Jiangsu University(15JDG004);Natural Science Foundation of Higher Education of Jiangsu(No.15KJD610001)

摘要: 通过测算武汉城市圈土地利用空间关联的碳排放效率及其收敛性,为该城市群提供碳减排方案。通过运用结合Bootstrap技术的Malmquist指数方法测算了武汉城市圈土地利用空间关联的碳排放效率及其技术进步和技术效率,并对该效率做σ-收敛和β-收敛分析。研究发现该城市圈土地利用空间关联的碳排放效率在2010年前呈上升趋势,之后出现下降;究其原因,虽然技术进步是持续的,但是不足以弥补技术效率的不断降低;将武汉城市圈按照土地类型分为三类城市,收敛性分析发现它们均出现了不同程度的收敛,而且收敛于较高的碳排放水平。根据以上的分析结果,结合该城市圈的产业布局,提出了相应的减碳方案。

关键词: 碳排放效率, 收敛性分析, Malmquist指数, Bootstrap技术, 武汉城市圈

Abstract: This paper provided carbon reduction program for Wuhan agglomeration by measuring land-use associated carbon emission efficiency and its convergence. This paper analyzed emission efficiency, technical progress and technical efficiency of this city group. σ and β convergences were calculated to analyze the carbon emission efficiency. The results showed that the land using carbon emission efficiency rose before 2010, then declined afterward. The underlying cause is that, although the technological progress is continuously rising, it cannot compensate for the reduction of technical efficiency. Wuhan city circle could be divided into three categories according to the type of urban land. The results showed that they have suffered different degrees of convergence. At the end, a carbon reduction program was proposed based on the above analysis.

Key words: carbon efficiency, convergence analysis, Malmquist index, bootstrap technique, Wuhan agglomeration

中图分类号: 

  • F301.2
[1] WATSON R T, NOBLE I R, BOLIN B, et al. Land use, land-use change, and forestry:a special report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2000.
[2] 史新峰. 气候变化与低碳经济[M]. 北京:中国水利水电出版社, 2010.
[3] VÁZQUEZ-ROWE I, MARVUGLIA A, REGE S, et al. Applying consequential LCA to support energy policy:land use change effects of bioenergy production[J]. Science of the Total Environment, 2014, 472:78-89.
[4] 崔玮, 苗建军, 杨晶. 基于碳排放约束的城市非农用地生态效率及影响因素分析[J]. 中国人口·资源与环境, 2013, 23(7):63-69.[CUI W, MIAO J J, YANG J. Urban non-agricultural eco-efficiency and affecting factors based on carbon emission[J]. China Population, Resources and Environment, 2013, 23(7):63-69.]
[5] 崔玮, 苗建军, 雷娜. 碳排放视角下城市非农用地利用绩效的空间差异分析[J]. 中国土地科学, 2013, 27(8):33-38.[CUI W, MIAO J J, LEI N. Analysis on spatial variation of the performance of urban non-agricultural land use in terms of carbon emission[J]. China Land Sciences, 2013, 27(8):33-38.]
[6] DEILMANN C, LEHMANN I, REIßMANN D, et al. Data envelopment analysis of cities-investigation of the ecological and economic efficiency of cities using a benchmarking concept from production management[J]. Ecological Indicators, 2016, 67:798-806.
[7] WANKE P, BARROS C P, FIGUEIREDO O. Efficiency and productive slacks in urban transportation modes:A two-stage SDEA-Beta Regression approach[J]. Utilities Policy, 2016, 41:31-39.
[8] RINANTI A, DEWI K, KARDENA E, et al. Biotechnology carbon capture and storage (CCS) by mix-culture green microalgae to enhancing carbon uptake rate and carbon dioxide removal efficiency with variation aeration rates in closed system photobioreactor[J]. Jurnal Teknologi, 2014, 69(6):93-99.
[9] RINANTI A, DEWI K, KARDENA E, et al. Biotechnology carbon capture and storage (CCS) by mix-culture green microalgae to enhancing carbon uptake rate and carbon dioxide removal efficiency with variation aeration rates in closed system photobioreactor[J]. Jurnal Teknologi, 2014, 69(6):93-99.
[10] 赖力, 黄贤金. 中国土地利用的碳排放效应研究[M]. 南京:南京大学出版社, 2011.
[11] KIVIMAA P, VIRKAMÄKI V. Policy mixes, policy interplay and low carbon transitions:the case of passenger transport in Finland[J]. Environmental Policy and Governance, 2014, 24(1):28-41.
[12] WENNERSTEN R, SUN Q, LI H L. The future potential for Carbon Capture and Storage in climate change mitigation-an overview from perspectives of technology, economy and risk[J]. Journal of Cleaner Production, 2015, 103:724-736.
[13] MARTINS L D, EUGENIO F C, RODRIGUES W N, et al. A bitter cup:the estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regions[J]. Plant Soil and Environment, 2015, 61(12):544-552.
[14] 杨宏玉. 区域经济低碳转型与土地利用结构优化研究——以重庆市为例[D]. 重庆:西南大学硕士学位论文, 2011.[YANG H Y. A research on the relationship between regional economic transition to low-carbon and land use structure optimization——a case study of Chongqing city[D]. Chongqing:Master Dissertation of Southwest University, 2011.]
[15] HINTZ M, LENNARTZ-SASSINEK S, LIU S F, et al. Quantification of land-surface heterogeneity via entropy spectrum method[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(14):8764-8777.
[16] 余德贵, 吴群. 基于碳排放约束的土地利用结构优化模型研究及其应用[J]. 长江流域资源与环境, 2011, 20(8):911-917.[YU D G, WU Q. Application of the model of land used structure optimization based on low-carbon limited[J]. Resources and Environment in the Yangtze Basin, 2011, 20(8):911-917.]
[17] 杨欣, 蔡银莺, 张安录. 武汉城市圈碳排放的时空格局及影响因素分解研究——基于2001~2009年市级面板数据的实证[J]. 长江流域资源与环境, 2013, 22(11):1389-1396.[YANG X, CAI Y Y, ZHANG A L. Spatial-temporal characteristics and affecting factors decomposition of carbon emission in Wuhan urban circle from 2001 to 2009[J]. Resources and Environment in the Yangtze Basin, 2013, 22(11):1389-1396.]
[18] 余光英, 员开奇. 武汉城市圈土地利用碳排放效率评价研究[J]. 资源开发与市场, 2014, 30(7):801-805, 816.[YU G Y, YUAN K Q. Study on land-use carbon emissions efficiency evaluation of Wuhan urban agglomeration[J]. Resource Development & Market, 2014, 30(7):801-805.]
[19] 董捷, 张雪, 张安录. 武汉城市圈农地城市流转效率测度——基于碳排放的视角[J]. 江汉论坛, 2015(8):23-29.[DONG J, ZHANG X, ZHANG A L. Land conversion efficiency measurement of Wuhan city circle base of carbon emissions[J]. Jianghan Tribune, 2015(8):23-29.]
[20] 雷辉, 张娟. 我国资本存量的重估及比较分析:1952-2012[J]. 经济问题探索, 2014(7):16-21.[LEI H, ZHANG J. Revaluation and comparative analysis of the capital stock:1952-2012[J]. Inquiry into Economic Issues, 2014(7):16-21.]
[21] 张梅, 赖力, 黄贤金, 等. 中国区域土地利用类型转变的碳排放强度研究[J]. 资源科学, 2013, 35(4):792-799.[ZHANG M, LAI L, HUANG X J, et al. The carbon emission intensity of land use conversion in different regions of China[J]. Resources Science, 2013, 35(4):792-799.]
[22] 张俊峰, 张安录, 董捷. 武汉城市圈土地利用碳排放效应分析及因素分解研究[J]. 长江流域资源与环境, 2014, 23(5):595-602.[ZHANG J F, ZHANG A L, DONG J. Carbon emission effect of land use and influencing factors decomposition of carbon emission in Wuhan urban agglomeration[J]. Resources and Environment in the Yangtze Basin, 2014, 23(5):595-602.]
[23] MATIN R K, AMIN G R, EMROUZNEJAD A. A modified semi-oriented radial measure for target setting with negative data[J]. Measurement, 2014, 54:152-158.
[24] SIMAR L, WILSON P W. Sensitivity analysis of efficiency scores:how to bootstrap in nonparametric frontier models[J]. Management Science, 1998, 44(1):49-61.
[1] 杨欣, 蔡银莺, 张安录. 农田生态补偿横向财政转移支付额度研究——基于选择实验法的生态外溢视角[J]. 长江流域资源与环境, 2017, 26(03): 368-375.
[2] 卢曦, 许长新. 基于三阶段DEA与Malmquist指数分解的长江经济带水资源利用效率研究[J]. 长江流域资源与环境, 2017, 26(01): 7-14.
[3] 刘传江, 赵晓梦. 长江经济带全要素碳生产率的时空演化及提升潜力[J]. 长江流域资源与环境, 2016, 25(11): 1635-1644.
[4] 王慧敏, 危小建, 刘耀林. 武汉城市圈公路沿线土地利用变化规律分析[J]. 长江流域资源与环境, 2016, 25(10): 1585-1593.
[5] 周琰, 张安录. 武汉城市圈城市用地扩张对经济增长贡献度的动态研究——“两型社会”试验区设置前后的比较[J]. 长江流域资源与环境, 2016, 25(07): 1043-1051.
[6] 姜大川, 肖伟华, 范晨媛, 宫博亚. 武汉城市圈水资源及水环境承载力分析[J]. 长江流域资源与环境, 2016, 25(05): 761-768.
[7] 黄亚林, 丁镭, 张冉, 刘超, 曾克峰. 武汉城市圈城市化发展与环境空气质量关系探讨[J]. 长江流域资源与环境, 2015, 24(12): 2117-2124.
[8] 何建华, 王宵君, 杜超, 李纯, 施璇. 武汉城市圈土地利用变化系统仿真模拟与驱动力分析[J]. 长江流域资源与环境, 2015, 24(08): 1270-1278.
[9] 胡鸿兴, 何伟, 沈虹, 王钰. 湖北“两圈”区域发展可持续性评价与预测[J]. 长江流域资源与环境, 2010, 19(04): 351-.
[10] 余 斌,李星明,曾菊新. 武汉城市圈产业发展的空间优化[J]. 长江流域资源与环境, 2007, 16(5): 560-560.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[4] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[5] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[6] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[7] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[8] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[9] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[10] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .