长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1832-1841.doi: 10.11870/cjlyzyyhj201612006

• 自然资源 • 上一篇    下一篇

长江口南槽中段枯季水沙输运特征研究

张钊, 李占海, 张国安, 王智罡, 姚俊   

  1. 华东师范大学 河口海岸学国家重点实验室, 上海 200062
  • 收稿日期:2016-04-29 修回日期:2016-08-28 出版日期:2016-12-20
  • 通讯作者: 李占海,E-mail:zhli@sklec.ecnu.edu.cn E-mail:zhli@sklec.ecnu.edu.cn
  • 作者简介:张钊(1992~),女,硕士研究生,主要从事河口海岸沉积动力学研究.E-mail:51142601010@ecnu.cn
  • 基金资助:
    国家自然科学基金项目(41176069);国家重点研发计划项目(2016YFA0600904)

WATER AND SUSPENDED SEDIMENT TRANSPORTS IN THE MIDDLE REACH OF THE SOUTH PASSAGE IN THE CHANGJIANG ESTUARY DURING THE DRY SEASON

ZHANG Zhao, LI Zhan-hai, ZHANG Guo-an, WANG Zhi-gang, YAO Jun   

  1. State Key Laboratory of Estuary and Coast, East China Normal University, Shanghai 200062, China
  • Received:2016-04-29 Revised:2016-08-28 Online:2016-12-20
  • Supported by:
    National Natural Science Foundation(41176069);National Key Research Planning Project(2016YFA0600904)

摘要: 根据2015年1月7日至14日在长江口南槽中段主槽内获得的流速和悬沙观测资料,运用机制分解法分析了从大潮到小潮连续变化过程中南槽中段的水沙输运机制,通过小波分析方法探讨了悬沙浓度和流速的周期性对悬沙输运的影响。研究结果表明:(1)在一个大小潮周期过程中各潮周期的单宽净输水以向海为主,斯托克斯余流和欧拉余流的强度由大潮到小潮呈减小趋势;(2)各潮周期的单宽净输沙以向陆为主,与净输水方向相反,输沙强度从大潮至小潮呈现“小-大-小”的变化特征,该特征的产生与潮泵效应输沙的剧烈潮周期变化有关,平流输沙、潮泵效应输沙与垂向净环流输沙项是影响潮周期净输沙的主要成分;(3)小波分析表明,悬沙浓度和流速具有多个时间周期的变化,它们与水位的联合作用导致瞬时输沙率具有2个明显的时间周期变化。

关键词: 水沙输运, 机制分解法, 输沙率, 小波分析, 长江口南槽

Abstract: Based on the data of current velocity and suspended sediment concentration measured in the main channel of the South Passage the Changjiang estuary from January 7 to 14 in 2015, the mechanisms of water and suspended sediment transports during a neap-spring tide cycle are analyzed by using the mechanism decomposition method. Furthermore, the influence of the periodic variation of suspended sediment concentration and current velocity on the suspended sediment transport is also explored by the method of wavelet analysis. The results showed that (1) the net water transport in most tidal cycles was seaward at the measurement station, and the magnitudes of the Euler and Stokes residual current decreased gradually from the spring tide to the neap tide. (2) The net suspended sediment transport was landward in each tidal cycle; from spring tide to neap tide the magnitude of suspended sediment transport displayed a remarkable "small-big-small" variation pattern owing to the intensively tidal variation of the tidal pumping transport; advection and net vertical circulation transport terms also play an important role on the net sediment transport. (3) The results of the wavelet analysis showed that the temporal variations of suspended sediment concentration and current velocity displayed several variation periods; the combined effect of suspended sediment concentration, flow velocity and water level leaded to 2 obvious variation period in the instantaneous sediment transport rate.

Key words: water and suspended sediment transports, mechanism decomposition method, sediment transport rate, wavelet analysis, the south passage of the Changjiang Estuary

中图分类号: 

  • TV147
[1] 沈焕庭, 潘定安. 长江河口最大浑浊带[M]. 北京:海洋出版社, 2001.[SHEN H T, PAN D A. Turbidity maximum in the Changjiang estuary[M]. Beijing:China Ocean Press, 2001.]
[2] 沈健, 沈焕庭, 潘定安, 等. 长江河口最大浑浊带水沙输运机制分析[J]. 地理学报, 1995, 50(5):411-420.[SHEN J, SHEN H T, PAN D A, et al. Analysis of transport mechanism of water and suspended sediment in the turbidity maximum of the Changjiang Estuary[J]. Acta Geographica Sinica, 1995, 50(5):411-420.]
[3] 王康墡, 苏纪兰. 长江口南港环流及悬移物质输运的计算分析[J]. 海洋学报, 1987, 9(5):627-637.[WANG K S, SU J L. The calculation and analysis of water circulation and transport of suspended matter in South Channel of Changjiang Estuary[J]. Acta Oceanologica Sinica, 1987, 9(5):627-637.]
[4] 时伟荣, 李九发. 长江河口南北槽输沙机制及浑浊带发育分析[J]. 海洋通报, 1993, 12(4):69-76.[SHI W R, LI J F. Mud transport calculation in Yangtse estuary and analyses of formation of turbidity maximum[J]. Marine Science Bulletin, 1993, 12(4):69-76.]
[5] 刘杰, 陈吉余, 乐嘉海, 等. 长江口深水航道治理一期工程实施对南槽冲淤演变的影响[J]. 泥沙研究, 2005(5):40-44.[LIU J, CHEN J Y, LE J H, et al. Effect of the implementation of the first/stage project of the deepwater channel regulation in the Yangtze River Estuary on the erosion and deposition in the South Passage[J]. Journal of Sediment Research, 2005(5):40-44.]
[6] 戴志军, 韩震, 恽才兴. 长江口南槽沉积物特征和运移趋势[J]. 海洋湖沼通报, 2005(2):72-78.[DAI Z J, HAN Z, YUN C X. Grainsize characteristics and transport trends of the sediment in the South Channel of the Yangtze River[J]. Transactions of Oceanology and Limnology, 2005(2):72-78.]
[7] LI Z H, LI M Z, DAI Z J, et al. Intratidal and neap-spring variations of suspended sediment concentrations and sediment transport processes in the North Branch of the Changjiang Estuary[J]. Acta Oceanologica Sinica, 2015, 34(1):137-147.
[8] SONG D H, WANG X H, CAO Z Y, et al. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009:1. Observations over spring and neap tidal cycles[J]. Journal of Geophysical Research:Oceans, 2013, 118(10):5555-5567.
[9] 赵方方. 长江口北槽中段河道悬沙时空变化和输运机制研究[D]. 上海:华东师范大学硕士学位论文, 2014.[ZHAO F F. Temporal and spatial variations and transport mechanisms of suspended sediment in the middle reach of North Passage in the Yangtze estuary[D]. Shanghai:Master Dissertation of East China Normal University, 2014.]
[10] 徐晓君, 杨世伦, 李鹏. GIS支持下的近期长江口南槽冲淤演变及其影响机制[C]//第十届中国河口海岸学术研讨会论文集. 北京:中国海洋学会, 2007:260-266.
[11] 沈焕庭. 长江河口物质通量[M]. 北京:海洋出版社, 2001:7-17.
[12] 方娟娟, 李义天, 孙昭华, 等. 长江大通站径流量变化特征分析[J]. 水电能源科学, 2011, 29(5):9-12, 193.[FANG J J, LI Y T, SUN Z H, et al. Analysis of runoff change characteristics at Datong Station of Yangtze River[J]. Water Resources and Power, 2011, 29(5):9-12, 193.]
[13] BOWDEN K F. The mixing processes in a tidal estuary[J]. Air and Water Pollution, 1963, 7:343-356.
[14] HANSEN D V, RATTRAY M JR. Gravitational circulation in straits and estuaries[J]. Journal of Marine Research, 1965, 23:104-122.
[15] FISCHER H B. Mixing and dispersion in estuaries[J]. Annual Review of Fluid Mechanics, 1976, 8(1):107-133.
[16] DYER K R. The salt balance in stratified estuaries[J]. Estuarine and Coastal Marine Science, 1974, 2(3):273-281.
[17] UNCLES R J, ELLIOTT R C A, WESTON S A, et al. Synoptic observations of salinity, suspended sediment and vertical current structure in a partly mixed estuary[M]//VAN DE KREEKE J. Physics of Shallow Estuaries and Bays:Lecture Notes on Coastal and Estuarine Studies. New York:Springer-Verlag, 1986, 16:58-70.
[18] 陈炜, 李九发, 李为华. 近期长江口南北槽分流口河段悬沙输运机制研究[J]. 长江流域资源与环境, 2013, 22(7):865-870.[CHEN W, LI J F, LI W H. Recent suspended sediment transport in bifurcation area of North and South Passage of the Yangtze Estuary[J]. Resources and Environment in the Yangtze Basin, 2013, 22(7):865-870.]
[19] 贺松林, 孙介民. 长江河口最大浑浊带的悬沙输移特征[J]. 海洋与湖沼, 1996, 27(1):60-66.[HE S L, SUN J M. Characteristics of suspended sediment transport in the turbidity maximum of the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 1996, 27(1):60-66.]
[20] 杨晓东, 姚炎明, 蒋国俊, 等. 乐清湾悬沙输移机制分析[J]. 海洋通报, 2011, 30(1):53-59.[YANG X D, YAO Y M, JIANG G J, et al. Study on the transport mechanism of suspended sediment in Yueqing Bay[J]. Marine Science Bulletin, 2011, 30(1):53-59.]
[21] FISCHER H B, LIST E J, KOH R C Y. Mixing in inland and coastal waters[M]. New York:Academic Press, 1979:229-280.
[22] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.
[23] 谢华亮, 戴志军, 左书华, 等. 1959~2013年长江河口南槽动力地貌演变过程[J]. 海洋工程, 2015, 33(5):51-59.[XIE H L, DAI Z J, ZUO S H, et al. Morphodynamic processes of the south passage of the Yangtze estuary (1959~2013)[J]. The Ocean Engineering, 2015, 33(5):51-59.]
[24] ZHANG X H, LI J F, ZHU W W, et al. The self-regulation process and its mechanism of channels' bed changes in the Changjiang (Yangtze) Estuary in China[J]. Acta Oceanologica Sinica, 2015, 34(7):123-130.
[25] 刘高伟, 程和琴, 李九发. 长江河口河槽水沙特性及其输移机制研究[J]. 泥沙研究, 2015(4):44-51.[LIU G W, CHENG H Q, LI J F. Transport mechanism and characteristics of water and suspended sediment in channels of the Changjiang Estuary[J]. Journal of Sediment Research, 2015(4):44-51.]
[1] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[2] 彭俊翔, 伍永年, 胡维平, 邓建才. 长荡湖近61a降水量演化特征[J]. 长江流域资源与环境, 2016, 25(02): 292-299.
[3] 赵平伟, 郭萍, 李成武, 李立印, 张俊凯, 李屏, 邓辉敏. 云南不同量级降雨下的降雨侵蚀力特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2135-2141.
[4] 刘健, 张奇, 许崇育, 翟建青, 靳晓莉. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010, 19(2): 139-.
[5] 张 强.
近40年来长江流域水沙变化趋势及可能影响因素探讨
[J]. 长江流域资源与环境, 2008, 17(2): 257-257.
[6] 刘会玉, 林振山, 张明阳. 近50年江苏省粮食产量变化的小波分析[J]. 长江流域资源与环境, 2004, 13(5): 460-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[4] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[5] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[8] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[9] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[10] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .