长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1894-1902.doi: 10.11870/cjlyzyyhj201612013
李云良1, 张小琳2, 赵贵章3, 姚静1, 张奇1,4
LI Yun-liang1, ZHANG Xiao-lin2, ZHAO Gui-zhang3, YAO Jing1, ZHANG Qi1,4
摘要: 基于野外定点监测数据,运用统计学方法解析鄱阳湖区地下水位年内分布特征和动态变化,辨析湖水和典型区地下水之间的侧向水力联系与程度。统计结果表明,不同洲滩地下水埋深变化范围约-8.1~-0.1 m,洲滩地下水和湖水在6~9月份保持完全水力连通。湖水位和洲滩地下水位动态变化呈现高度一致性,表明了洲滩地下水和湖水具有密切的侧向水力联系。湖岸带不同典型区的地下水埋深变化范围介于-10~-2.2 m。湖岸带地下水位与湖水位并不具有日时间尺度变化上的高度一致性,但两者却很好呈现了月尺度上的较好一致性,表明了湖岸带地下水与湖水之间具有一定的相互关系和水力联系。小波分析得出,湖水位和洲滩、湖岸带不同典型区的地下水位均在60 d尺度的周期上存在着极大可能的显著相关,总体上两者呈正相关关系变化,表明湖水和洲滩地下水具有密切的水力联系,但与湖岸带地下水的侧向水力联系可能体现在个别典型时段。为今后鄱阳湖地下水方面的相关研究奠定基础,也为鄱阳湖湿地生态环境保护、水资源评价等方面提供科学依据和参考。
中图分类号:
[1] EDWARDSON K J, BOWDEN W B, DAHM C, et al. The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska[J]. Advances in Water Resources, 2003, 26(9):907-923. [2] SALEHIN M, PACKMAN A I, PARADIS M. Hyporheic exchange with heterogeneous streambeds:laboratory experiments and modeling[J]. Water Resources Research, 2004, 40(11):W11504, doi:10.1029/2003WR002567. [3] 滕彦国, 左锐, 王金生. 地表水-地下水的交错带及其生态功能[J]. 地球与环境, 2007, 35(1):1-8.[TENG Y G, ZUO R, WANG J S. Hyporheic zone of groundwater and surface water and its ecological function[J]. Earth and Environment, 2007, 35(1):1-8.] [4] URBANO L D, PERSON M, HANOR J. Groundwater-lake interactions in semi-arid environments[J]. Journal of Geochemical Exploration, 2000, 69-70:423-427. [5] 李均力, 胡汝骥, 黄勇, 等. 1964-2014年柴窝堡湖面积的时序变化及驱动因素[J]. 干旱区研究, 2015, 32(3):417-427.[LI J L, HU R J, HUANG Y, et al. Spatial-temporal characteristics of Chaiwopu Lake area change and its driving factors from 1964 to 2014[J]. Arid Zone Research, 2015, 32(3):417-427.] [6] ECKHARDT K, ULBRICH U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range[J]. Journal of Hydrology, 2003, 284(1/4):244-252. [7] MEIXNER T, MANNING A H, STONESTROM D A, et al. Implications of projected climate change for groundwater recharge in the western United States[J]. Journal of Hydrology, 2016, 534:124-138. [8] SHANKMAN D, KEIM B D, SONG J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology, 2006, 26(9):1255-1266. [9] KANAI Y, UETA M, GERMOGENOV N, et al. Migration routes and important resting areas of Siberian cranes (Grus leucogeranus) between northeastern Siberia and China as revealed by satellite tracking[J]. Biological Conservation, 2002, 106(3):339-346. [10] 许秀丽, 张奇, 李云良, 等. 鄱阳湖典型洲滩湿地土壤含水量和地下水位年内变化特征[J]. 湖泊科学, 2014, 26(2):260-268.[XU X L, ZHANG Q, LI Y L, et al. Inner-annual variation of soil water content and groundwater level in a typical islet wetland of Lake Poyang[J]. Journal of Lake Sciences, 2014, 26(2):260-268.] [11] 陈建生, 彭青, 詹泸成, 等. 鄱阳湖流域河水、湖水及地下水同位素特征分析[J]. 水资源保护, 2015, 31(4):1-7.[CHEN J S, PENG Q, ZHAN L C, et al. Analysis of isotopes characteristics of river water, lake water and groundwater in Poyang Lake Basin[J]. Water Resources Protection, 2015, 31(4):1-7.] [12] LANDON M K, RUS D L, HARVEY F E. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds[J]. Ground Water, 2001, 39(6):870-885. [13] CHRISTENSEN S, RASMUSSEN K R, MOLLER K. Prediction of regional ground water flow to streams[J]. Ground Water, 1998, 36(2):351-360. [14] HARE D K, BRIGGS M A, ROSENBERRY D O, et al. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water[J]. Journal of Hydrology, 2015, 530:153-166. [15] KARAN S, KIDMOSE J, ENGESGAARD P, et al. Role of a groundwater-lake interface in controlling seepage of water and nitrate[J]. Journal of Hydrology, 2014, 517:791-802. [16] CONSTANTZ J, COX M H, SU GW. Comparison of heat and bromide as ground water tracers near streams[J]. Ground Water, 2003, 41(5):647-656. [17] 陈崇希, 裴顺平, 王逊. 非完整河的数值模拟方法及建模中的若干问题——读"数值模拟方法在评价地下水资源时区内河流的处理方法"一文随笔[J]. 勘察科学技术, 1999(4):3-6.[CHEN C X, PEI S P, WANG X. Numerical simulation method of partial penetration river and some problems in the establishment of models-an informal essay after reading "treatment of regional river during evaluation of groundwater resources by numerical simulation"[J]. Site Investigation Science and Technology, 1999(4):3-6.] [18] PARKIN G, BIRKINSHAW S J, YOUNGER P L, et al. A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows[J]. Journal of Hydrology, 2007, 339(1/2):15-28. [19] 胡春华, 童乐, 万齐远, 等. 环鄱阳湖浅层地下水水化学特征的时空变化[J]. 环境化学, 2013, 32(6):974-979.[HU C H, TONG L, WAN Q Y, et al. Spatial and temporal variation of shallow groundwater chemical characteristics around Poyang Lake[J]. Environmental Chemistry, 2013, 32(6):974-979.] [20] 曾昭华. 江西省鄱阳湖地区地下水中SiO2的分布特征及开发评价[J]. 地质与勘探, 1999, 35(2):37-40.[ZENG Z H. The distribution feature and development assessment of SiO2 in groundwater in the area of Poyang Lake, Jiangxi Province[J]. Geology and Prospecting, 1999, 35(2):37-40.] [21] BOX G E P, JENKINS G M, REINSEL G C. Time series analysis:forecasting and control[M]. Englewood Cliffs, New Jersey, USA:Prentice Hall Inc., 1994. [22] FOUFOULA-GEORGIOU E, KUMAR P. Wavelets in geophysics[M]. San Diego:Academic Press, 1994. [23] GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6):561-566. [24] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78. [25] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78. [26] TORRENCE C, WEBSTER P J. Interdecadal changes in the ENSO-monsoon system[J]. Journal of Climate, 1999, 12(8):2679-2690. |
[1] | 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924. |
[2] | 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729. |
[3] | 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737. |
[4] | 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518. |
[5] | 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584. |
[6] | 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208. |
[7] | 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296. |
[8] | 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125. |
[9] | 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133. |
[10] | 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16. |
[11] | 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102. |
[12] | 张钊, 李占海, 张国安, 王智罡, 姚俊. 长江口南槽中段枯季水沙输运特征研究[J]. 长江流域资源与环境, 2016, 25(12): 1832-1841. |
[13] | 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758. |
[14] | 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402. |
[15] | 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208. |
|