长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1910-1916.doi: 10.11870/cjlyzyyhj201612015

• 生态环境 • 上一篇    下一篇

湖北郧西县庹家湾剖面粒度组成特征及其环境意义

张文桐, 庞奖励, 周亚利, 黄春长, 查小春, 崔天宇   

  1. 陕西师范大学旅游与环境学院, 陕西 西安 710062
  • 收稿日期:2016-04-01 修回日期:2016-08-09 出版日期:2016-12-20
  • 通讯作者: 庞奖励,E-mail:jlpang@snnu.edu.cn E-mail:jlpang@snnu.edu.cn
  • 作者简介:张文桐(1991~),男,硕士研究生,主要研究方向为土地利用与气候变化.E-mail:978696657@qq.com
  • 基金资助:
    国家自然科学基金项目(41271108,41371029);国家社会科学基金项目(14BZS070);中央高校基本科研费(GK201601006)

GRAIN SIZE DISTRIBUTION AND ITS SIGNIFICATION IN TUOJIAWAN PROFILE, HUBEI PROVINCE

ZHANG Wen-tong, PANG Jiang-li, ZHOU Ya-li, HUANG Chun-chang, ZHA Xiao-chun, CUI Tian-yu   

  1. College of Tourism and Environment, Shaanxi Normal University, Xi'an 710062, China
  • Received:2016-04-01 Revised:2016-08-09 Online:2016-12-20
  • Supported by:
    National Nature Science Foundation of China(Grant No.41271108,No.41371029);National Social Science Foundation of China(Grant No.14BZS070);Fundamental Research Funds for Central Universities(Grant No.GK201601006)

摘要: 对湖北省郧西县庹家湾(TJW)剖面的地层序列、年代、磁化率及粒度组成进行研究。结果表明:TJW剖面具有表土(MS)→全新世黄土(L0)→古土壤(S0)→过渡层(Lt)→马兰黄土(L1)→黄土与砂互层(T1-al2)→砾石层(T1-al1)的地层序列;在马兰黄土层上部的黏粒含量、黏粒/粉砂值以及磁化率值明显高于典型马兰黄土,而接近古土壤(S0),其成壤作用明显,属于较典型的弱古土壤层(L1-S1和L1-S2),其年龄在27.3~21.6 ka B.P.之间。此现象反映了在汉江上游地区,晚更新世时期的冰期气候并不是持续稳定的,在27.3~21.6 ka B.P.期间存在相对短暂的温暖湿润阶段,这次气候事件可与黄土高原地区进行良好对比。

关键词: 汉江上游, 粒度, 弱古土壤, 气候变化

Abstract: The Loess-palaeosol profile was surveyed in detail and sampled systematically at the Tuojiawan site on the first river terrace in the upper Hanjiang valley. The stratigraphic and sedimentological characteristics, pedogenic modification characteristics and the profile structure were observed in the field. Magnetic susceptibility, particle-size distribution and optical luminescence dating(OSL) were analyzed in laboratory. The results showed that TJW profile recorded the environment features and evolution with the stratigraphic series on the first terrace from the bottom to the top was listed as fluvial gravel(T1-al1)→eolian loess and alluvial sand inter-beds(T1-al2)→Malan loess(L1)→transitional loess(Lt)→palaeosol(S0)→recent loess(L0)→modern soil(MS). Different degree of weathering intensity in different stratigraphic. The content of clay, clay/coarse silt ratio, magnetic susceptibility in the top of Malan loess were higher than those in the typical Malan loess. It was showed that the weathering intensity on the top of Malan loess (228~260 cm and 294~370 cm) was obviously higher than that on malan loess, close to the palaeosol(S0), belongs to the weak palaeosol(L1-S1 and L1-S2). The OSL age results showed that the two layers of weak palaeosol (L1-S1 and L1-S2) were deposited between 27.3 and 21.6 ka BP. TJW loess-palaeosol sequence recorded monsoonal climate change since Pleistocene. Including the cold and arid glacial and a short time the climate was warm and wet in the glacial period(27.3~21.6 ka BP), the gradually intensified southeast monsoon during the early Holocene periods, the strongest monsoon in the mid-Holocene, and the monsoon recession and the climate drying during the late Holocene.

Key words: Hanjiang River, grain size, weak palaeosol, climate change

中图分类号: 

  • P593
[1] HUANG C C, PANG J L, ZHA X C, et al. Extraordinary hydro-climatic events during the period AD 200-300 recorded by slackwater deposits in the upper Hanjiang River valley, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374:274-283.
[2] ZHANG Y Z, HUANG C C, PANG J L, et al. Comparative study of the modern flood slackwater deposits in the upper reaches of Hanjiang and Weihe river valleys, China[J]. Quaternary International, 2012, 282:184-191.
[3] 查小春, 黄春长, 庞奖励, 等. 汉江上游郧西段全新世古洪水事件研究[J]. 地理学报, 2012, 67(5):671-680.[ZHA X C, HUANG C C, PANG J L, et al. The Holocene palaeoflood events in the Yunxi Reach in the upper reaches of Hanjiang River[J]. Acta Geographica Sinica, 2012, 67(5):671-680.]
[4] 庞奖励, 黄春长, 周亚利, 等. 汉江上游谷地全新世风成黄土及其成壤改造特征[J]. 地理学报, 2011, 66(11):1562-1573.[PANG J L, HUANG C C, ZHOU Y L, et al. Holocene Aeolian loess and its pedogenic modification in the upper Hanjiang River Valley, China[J]. Acta Geographica Sinica, 2011, 66(11):1562-1573.]
[5] 周亮, 黄春长, 周亚利, 等. 汉江上游郧西郧县段古洪水事件光释光测年及其对气候变化的响应[J]. 地理研究, 2014, 33(6):1178-1192.[ZHOU L, HUANG C C, ZHOU Y L, et al. Palaeoflood OSL chronology and its response to climate change in the Yunxi-Yunxian reach in the upper Hanjiang River valley[J]. Geographical Research, 2014, 33(6):1178-1192.]
[6] 马春梅, 朱诚, 郑朝贵, 等. 晚冰期以来神农架大九湖泥炭高分辨率气候变化的地球化学记录研究[J]. 科学通报, 2008, 53(S1):26-37.[MA C M, ZHU C, ZHENG C G, et al. High-resolution geochemistry records of climate changes since late-glacial from Dajiuhu peat in Shennongjia Mountains, Central China[J]. Chinese Science Bulletin, 2008, 53(S1):28-41.]
[7] 黄培华, 李文森. 湖北郧县曲远河口的地貌、第四纪地层和埋藏环境[J]. 汉江考古, 1995(4):83-86.[HUANG P H, LI W S. Landscape, quaternary strata and buried environment at estuary of the Quyuan River in Yunxian county, Hubei Province[J]. Jianghan Archaeology, 1995(4):83-86.]
[8] 雷祥义. 秦岭黄土-古土壤发育时的植被与环境[J]. 海洋地质与第四纪地质, 2000, 20(1):73-79.[LEI X Y. Vegetation and environment during period of loess-paleosol development in the Qinling Mountains[J]. Marine Geology & Quaternary Geology, 2000, 20(1):73-79.]
[9] 何报寅, 张穗, 蔡述明. 近2600年神农架大九湖泥炭的气候变化记录[J]. 海洋地质与第四纪地质, 2003, 23(2):109-115.[HE B Y, ZHANG S, CAI S M. Climatic changes recorded in peat from the Dajiu Lake basin in Shennongjia since the last 2600 years[J]. Marine Geology & Quaternary Geology, 2003, 23(2):109-115.]
[10] 刘洪滨, 邵雪梅. 利用树轮重建秦岭地区历史时期初春温度变化[J]. 地理学报, 2003, 58(6):879-884.[LIU H B, SHAO X M. Reconstruction of early-spring temperature of Qinling Mountains using tree-ring chronologies[J]. Acta Geographica Sinica, 2003, 58(6):879-884.]
[11] HUANG C C, PANG J L, ZHA X C, et al. Extraordinary hydro-climatic events during the period AD 200-300 recorded by slackwater deposits in the upper Hanjiang River valley, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374:274-283.
[12] 翟新伟, 李富强, 吴松. 会宁剖面黄土粒度记录的MIS3阶段气候变化研究[J]. 干旱区地理, 2013, 36(5):773-780.[ZHAI X W, LI F Q, WU S. Huining MIS3 stage climate change based on the loess grain size record[J]. Arid Land Geography, 2013, 36(5):773-780.]
[13] 郭娇, 王伟, 吴利杰. 陕西吴起金丁黄土剖面末次冰期的环境记录[J]. 干旱区资源与环境, 2015, 29(4):108-112.[GUO J, WANG W, WU L J. Environmental records of the last glacial period on Jinding loess profile in Wuqi, Shannxi province[J]. Journal of Arid Land Resources and Environment, 2015, 29(4):108-112.]
[14] 陈发虎, 马玉贞, 李吉均. 陇西黄土高原马兰黄土划分与末次冰期气候快速变化研究[J]. 冰川冻土, 1996, 18(2):111-118.[CHEN F H, MA Y Z, LI J J. High resolution record of Malan loess in the Longxi loess plateau and rapid climate changes during the last glaciation[J]. Journal of Glaciology and Geocryology, 1996, 18(2):111-118.]
[15] 刘东升. 黄土与环境[M]. 北京:科学出版社, 1985:1-336.
[16] 鹿化煜, 安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学(D辑), 1998, 28(3):278-283.[LU H Y, AN Z S. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science in China Series D:Earth Sciences, 1998, 41(6):626-631.]
[17] 鹿化煜, 安芷生. 洛川黄土粒度组成的古气候意义[J]. 科学通报, 1997, 42(1):66-69.[LU H Y, AN Z S. Paleoclimatic significance of grain size of loess-palaeosol deposit in Luochuan[J]. Chinese Science Bulletin, 1997, 42(1):66-69.]
[18] 牛光明, 强明瑞, 宋磊, 等. 近5000a来柴达木盆地东南缘风成沉积记录的冬季风演化[J]. 中国沙漠, 2010, 30(5):1031-1039.[NIU G M, QIANG M R, SONG L, et al. Change of eastern Asian winter monsoon recorded by Aeolian deposits over the past 5000 years at the southeastern margin of Qaidam Basin[J]. Journal of Desert Research, 2010, 30(5):1031-1039.]
[19] DING Z L, SUN J M, LIU D S. A sedimentological proxy indicator linking changes in loess and deserts in the Quaternary[J]. Science in China Series D:Earth Sciences, 1999, 42(2):146-152.
[20] 卞鸿雁, 庞奖励, 黄春长, 等. 汉江上游谷地与渭河谷地黄土化学风化程度比较[J]. 地理研究, 2014, 33(4):654-664.[BIAN H Y, PANG J L, HUANG C C, et al. A comparative study of chemical weathering intensity and element transport features of loess-palaeosol in the upper reaches of Hanjiang and Weihe river valleys, China[J]. Geographical Research, 2014, 33(4):654-664.]
[21] 王朝建, 庞奖励, 黄春长, 等. 汉江上游谷地黄褐土粒度组成特征及其意义[J]. 陕西师范大学学报(自然科学版), 2012, 40(3):76-80.[WANG C J, PANG J L, HUANG C C, et al. The grain construction of the yellow cinnamon soil and its significance in the upper reaches of Hanjiang valley[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2012, 40(3):76-80.]
[22] 汪海斌, 陈发虎, 张家武. 黄土高原西部地区黄土粒度的环境指示意义[J]. 中国沙漠, 2002, 22(1):21-26.[WANG H B, CHEN F H, ZHANG J W. Environmental significance of grain size of Loess-paleosol sequence in western part of Chinese Plateau[J]. Journal of Desert Research, 2002, 22(1):21-26.]
[23] 贾耀锋, 庞奖励. 关中盆地东部全新世剖面粒度组成与气候变化研究[J]. 中国沙漠, 2004, 24(2):153-155.[JIA Y F, PANG J L. Composition characteristics of grain size and suggesting palaeoclimate at Liwan section in eastern Guanzhong Basin[J]. Journal of Desert Research, 2004, 24(2):153-155.]
[24] 陈宝群, 黄春长, 李平华. 陕西扶风黄土台塬全新世成壤环境变化研究[J]. 中国沙漠, 2004, 24(2):149-152.[CHEN B Q, HUANG C C, LI P H. Holocene pedogensis and environmental change on the loess tableland in Fufeng County, Shaanxi Province[J]. Journal of Desert Research, 2004, 24(2):149-152.]
[25] 刘秀铭, 刘东生, SHAW J. 中国黄土磁性矿物特征及其古气候意义[J]. 第四纪研究, 1993(3):281-287.[LIU X M, LIU D S, SHAW J. Magnetic mineral characteristics of Chinese loess and its palaeoclimatic significance[J]. Quaternary Sciences, 1993(3):281-287.]
[26] 刘秀铭, 刘东生, HELLER F, 等. 中国黄土磁化率与第四纪古气候研究[J]. 地质科学, 1992(S):279-285.[LIU X M, LIU D S, HELLER F, et al. Study on magnetic susceptibility of loess and Quternary climate in China[J]. Scientia Geologica Sinica, 1992(S):279-285.]
[27] 柏道远, 李长安, 陈渡平, 等. 化学风化指数和磁化率对洞庭盆地第四纪古气候变化的响应[J]. 中国地质, 2011, 38(3):779-785.[BAI D Y, LI C A, CHEN D P, et al. Chemical weathering index and magnetic susceptibility of deposits and their responses to the Quaternary climate in Dongting Basin[J]. Geology in China, 2011, 38(3):779-785.]
[1] 杨娜, 赵巧华, 闫桂霞, 黄琴. 气候变化和人类活动对丹江口入库径流的影响及评估[J]. 长江流域资源与环境, 2016, 25(07): 1129-1134.
[2] 史超, 夏军, 佘敦先, 万蕙, 黄金凤. 气候变化下汉江上游林地植被生态需水量的时空演变[J]. 长江流域资源与环境, 2016, 25(04): 580-589.
[3] 付莲莲, 朱红根, 周曙东. 江西省气候变化的特征及其对水稻产量的贡献——基于“气候-经济”模型[J]. 长江流域资源与环境, 2016, 25(04): 590-598.
[4] 丁文荣. 环洱海地区气候变化特征研究[J]. 长江流域资源与环境, 2016, 25(04): 599-605.
[5] 史军, 穆海振. 大城市应对气候变化的可持续发展研究——以上海为例[J]. 长江流域资源与环境, 2016, 25(01): 1-8.
[6] 张秀琴, 王亚华. 中国水资源管理适应气候变化的研究综述[J]. 长江流域资源与环境, 2015, 24(12): 2061-2068.
[7] 刘佳, 马振峰, 杨淑群, 杨小波, 李小兰. 1961~2010年大渡河流域极端降水事件变化特征[J]. 长江流域资源与环境, 2015, 24(12): 2166-2176.
[8] 马彩虹, 赵晶, 谭晨晨. 基于IPCC方法的湖南省温室气体排放核算及动态分析[J]. 长江流域资源与环境, 2015, 24(10): 1786-1792.
[9] 吴帅虎, 庞奖励, 程和琴, 黄春长, 查小春, 杨建超. 汉江辽瓦店全新世黄土-古土壤序列风化过程及古洪水事件记录[J]. 长江流域资源与环境, 2015, 24(05): 846-852.
[10] 李 灿| 陈正洪. 武汉市主要年气候要素及其极值变化趋势[J]. 长江流域资源与环境, 2010, 19(01): 37-.
[11] 刘晓冉, 杨茜, 程炳岩, 张天宇. 三峡库区21世纪气候变化的情景预估分析[J]. 长江流域资源与环境, 2010, 19(01): 42-.
[12] 滕明君, 周志翔, 王鹏程, 覃婕, 王燕燕, 史梅容. 基于RS/GIS的武汉市九峰城市森林保护区景观结构特征及规划对策[J]. 长江流域资源与环境, 2010, 19(01): 79-.
[13] 吴必文, 温华洋, 叶朗明, 徐光清. 安徽地区近45年蒸发皿蒸发量变化特征及影响因素初探[J]. 长江流域资源与环境, 2009, 18(7): 620-.
[14] 卜红梅 党海山 张全发. 汉江上游金水河流域近50年气候变化特征及其对生态环境的影响[J]. 长江流域资源与环境, 2009, 18(5): 459-.
[15] 李思悦 刘文治 顾胜 韩鸿印 张全发. null[J]. 长江流域资源与环境, 2009, 18(3): 275-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 健,陈 星,彭恩志,周学东. 气候变化对江苏省城市系统用电量变化趋势的影响[J]. 长江流域资源与环境, 2005, 14(5): 546 -550 .
[2] 于国荣,夏自强,叶辉,王桂华,吴 瑶. 大坝下游河段的河流生态径流调控研究[J]. 长江流域资源与环境, 2008, 17(4): 606 .
[3] 张 静,汪诚信,白呼群,苏崇鳌,鄂启顺,武桂珍,黄玉英. 三峡库区虫媒和自然疫源性疾病分析[J]. 长江流域资源与环境, 2004, 13(2): 145 -148 .
[4] 谢 辉,张 雷,姜 巍,程晓凌. 21世纪初华中地区发展的资源环境基础[J]. 长江流域资源与环境, 2006, 15(1): 1 -5 .
[5] 吴佳鹏 陈凯麒. 基于灰色模糊理论的流域水电规划环境影响综合评价[J]. 长江流域资源与环境, 2009, 18(3): 281 -285 .
[6] 陈群元 宋玉祥 喻定权. null[J]. 长江流域资源与环境, 2009, 18(4): 301 .
[7] 张永永, 黄强, 桑华. 商洛市水资源供需分析及合理利用对策[J]. 长江流域资源与环境, 2009, 18(7): 630 .
[8] 席酉民, 刘静静, 沈力. 国外流域管理的成功经验对雅砻江流域管理的启示[J]. 长江流域资源与环境, 2009, 18(7): 635 .
[9] 但尚铭, 安海锋, 但玻, 许辉熙, 杨玲, 陈刚毅. 基于AVHRR和DEM的重庆城市热岛效应分析[J]. 长江流域资源与环境, 2009, 18(7): 680 .
[10] 方国华, 夏春凤, 于凤存. 水利枢纽施工干扰区生态系统综合评价[J]. 长江流域资源与环境, 2009, 18(12): 1193 .