长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 257-263.doi: 10.11870/cjlyzyyhj201702011
杨燕1,2, 易军1,2, 刘目兴1,2, 张君1,2, 李胜龙1,2
YANG Yan1,2, YI Jun1,2, LIU Mu-xing1,2, ZHANG Jun1,2, LI Sheng-long1,2
摘要: 利用田间染色示踪和室内样品分析相结合的方法,研究了江汉平原不同水耕年限稻田土壤水分运动特征及其影响因素,期望为制定合理的稻田水分管理措施提供科学依据。结果表明:新稻田(水耕17a)与老稻田(水耕大于100a)土壤理化性质差异显著,引发土壤剖面内不同水分运动特征。新稻田垂直渗漏较老稻田明显,表现为新稻田有更大的染色深度。老稻田染色区域主要集中在耕作层,染色面积为48.52%;犁底层和底土层染色面积较小,仅为3.17%和0.2%。除耕作层外,新稻田其他土层染色面积均大于老稻田,且优先流特征较老稻田明显。老稻田侧向水分运动较新稻田强烈,其侧流剖面的染色面积(15.35%)显著高于新稻田(8.45%),老稻田侧向水流主要发生在犁底层以上。为减少稻田水分渗漏损失,老稻田可以通过减少农田-田埂-沟渠过渡区侧渗实现,而新稻田可采取少量多次的灌溉原则。
中图分类号:
[1] 刘丙军, 陈晓宏, 张灵, 等. 中国南方季节性缺水地区水资源合理配置研究[J]. 水利学报, 2007, 38(6):732-737.[LIU B J, CHEN X H, ZHANG L, et al. Optimal deployment of water resources for seasonal water shortage area in South China[J]. Journal of Hydraulic Engineering, 2007, 38(6):732-737.] [2] 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2):116-120.[ZHANG L P, XIA J, HU Z F. Situation and problem analysis of water resource security in China[J]. Resources and Environment in the Yangtze Basin, 2009, 18(2):116-120.] [3] 叶玉适, 梁新强, 李亮, 等. 不同水肥管理对太湖流域稻田磷素径流和渗漏损失的影响[J]. 环境科学学报, 2015, 35(4):1125-1135.[YE Y S, LIANG X Q, Li L, et al. Effects of different water and nitrogen managements on phosphorus loss via runoff and leaching from paddy fields in Taihu Lake basin[J]. Acta Scientiae Circumstantiae, 2015, 35(4):1125-1135.] [4] 马经安, 李红清. 浅谈国内外江河湖库水体富营养化状况[J]. 长江流域资源与环境, 2002, 11(6):575-578.[MA J A, LI H Q. Preliminary discussion on eutrophication status of lakes, reservoirs and rivers in China and overseas[J]. Resources and Environment in the Yangtze Basin, 2002, 11(6):575-578.] [5] 张润清. 江汉平原农产品加工业发展战略研究[D]. 武汉:华中农业大学博士学位论文, 2005.[ZHANG R Q. A research on developing strategy of agro-industry in Jiang-han Plain[D]. Wuhan:Doctor Dissertation of Huazhong Agricultural University, 2005.] [6] 陈锋, 谢正辉. 农作物分布对南水北调受水区域陆面过程模拟的影响[J]. 地理科学进展, 2008, 27(4):28-36.[CHEN F, XIE Z H. Effects of crop distribution on land surface simulations over the intake area of the South-to-North water transfer project[J]. Progress in Geography, 2008, 27(4):28-36.] [7] 张落成. 我国粮食生产布局变化特点及其成因分析[J]. 长江流域资源与环境, 2000, 9(2):221-228.[ZHANG L C. Food distribution change in China and its reasons[J]. Resources and Environment in the Yangtze Basin, 2000, 9(2):221-228.] [8] 来剑斌, 王全九. 土壤水分特征曲线模型比较分析[J]. 水土保持学报, 2003, 17(1):137-140.[LAI J B, WANG Q J. Comparison of soil water retention curve model[J]. Journal of Soil and Water Conservation, 2003, 17(1):137-140.] [9] BAIER W, ROBERTSON G W. Soil moisture modelling-conception and evolution of the VSMB[J]. Canadian Journal of Soil Science, 1996, 76(3):251-261. [10] BOUMAN B A M, KROPFF M J, TUONG T P, et al. ORYZA2000:Modeling lowland rice[M]. Los Baños, Philippines:International Rice Research Institute, 2001. [11] WEILER M, FLÜHLER M. Inferring flow types from dye patterns in macroporous soils[J]. Geoderma, 2004, 120(1/2):137-153. [12] BOUMA J, DEKKER L W. A case study on infiltration into dry clay soil I. Morphological observations[J]. Geoderma, 1978, 20(1):27-40. [13] KUNG K J S. Preferential flow in a sandy vadose zone:2. Mechanism and implications[J]. Geoderma, 1990, 46(1/3):59-71. [14] ALAOUI A, GOETZ B. Dye tracer and infiltration experiments to investigate macropore flow[J]. Geoderma, 2008, 144(1/2):279-286. [15] LAINE-KAULIO H, BACKNÄS S, KOIVUSALO H, et al. Dye tracer visualization of flow patterns and pathways in glacial sandy till at a boreal forest hillslope[J]. Geoderma, 2015, 259-260:23-34. [16] 闫加力, 李懋, 熊双莲, 等. 旱改水对水稻幼苗生长的影响及秸秆的改良作用[J]. 中国生态农业学报, 2015, 23(5):554-562.[YAN J L, LI M, XIONG S L, et al. Effect of reclaiming cotton field into paddy and straw application on rice seedling growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5):554-562.] [17] DUNN B W, DUNN T S. Influence of soil type on severity of straighthead in rice[J]. Communications in Soil Science and Plant Analysis, 2012, 43(12):1705-1719. [18] 陈芳, 张海涛, 王天巍, 等. 江汉平原典型土壤的系统分类及空间分布研究[J]. 土壤学报, 2014, 51(4):761-771.[CEHN F, ZHANG H T, WANG T W, et al. Taxonomy and spatial distribution of soils typical of Jianghan Plain[J]. Acta Pedologica Sinica, 2014, 51(4):761-771.] [19] 武汉市农业气象试验站. 江汉平原地下水位变化规律初探[J]. 中国农业大学学报, 1990, 16(S3):111-115.[Wuhan Agrometerological Experimental Station. Initial approach to the change law of the underground water level in Jiang-han Plain[J]. Acta Agriculturae Universitatis Pekinensis, 1990, 16(S3):111-115.] [20] 程东娟, 张亚丽. 土壤物理实验指导[M]. 北京:中国水利水电出版社, 2012. [21] 田香姣, 程金花, 杜士才, 等. 2种土地利用方式下的优先流特征[J]. 水土保持学报, 2014, 28(3):37-41.[TIAN X J, CHENG J H, DU S C, et al. Characteristics of preferential flow under two kinds of land use patterns[J]. Journal of Soil and Water Conservation, 2014, 28(3):37-41.] [22] 田香姣. 四面山两种土地利用方式下的优先流特征[D]. 北京:北京林业大学硕士学位论文, 2015.[TIAN X J. Characteristics of preferential flow under two kinds of land use patterns in simian mountain[D]. Beijing:Master Dissertation of Beijing Forestry University, 2015.] [23] JANSSEN M, LENNARTZ B. Horizontal and vertical water and solute fluxes in paddy rice fields[J]. Soil and Tillage Research, 2007, 94(1):133-141. [24] 吕文星. 三峡库区三种土地利用方式优先流特征及其对硝态氮运移的影响[D]. 北京:北京林业大学博士学位论文, 2013.[LV W X. Characteristics of preferential flow and its effect on Nitrate Nitrogen transport in three land use types of the three gorges reservoir area[D]. Beijing:Doctor Dissertation of Beijing Forestry University, 2013.] [25] JANSSEN M, LENNARTZ B. Water losses through paddy bunds:methods, experimental data, and simulation studies[J]. Journal of Hydrology, 2009, 369(1/2):142-153. [26] JANSSEN M, LENNARTZ B. Characterization of preferential flow pathways through paddy bunds with dye tracer tests[J]. Soil Science Society of America Journal, 2008, 72(6):1756-1766. [27] 张中彬. 红壤性水稻土裂隙特征及其对优势流的影响[D]. 北京:中国科学院大学博士学位论文, 2013.[ZHANG Z B. Characteristics of cracks in reddish paddy soil and its consequences on preferential flow[D]. Beijing:Doctor Dissertation of University of Chinese Academy of Sciences, 2013.] [28] 高朝侠, 徐学选, 赵传普, 等. 土壤初始含水率对优先流的影响[J]. 中国水土保持科学, 2014, 12(1):46-54.[GAO Z X, XU X X, ZHAO C P, et al. Effect of initial soil water content on preferential flow[J]. Science of Soil and Water Conservation, 2014, 12(1):46-54.] [29] 张欣, 张洪江, 张福明, 等. 西南山区农地土壤前期含水量对优先流的影响[J]. 水土保持学报, 2014, 28(2):1-7, 14.[ZHANG X, ZHANG H J, ZHANG F M, et al. Effect of antecedent soil moisture on preferential flow in agricultural land of Southwest mountains[J]. Journal of Soil and Water Conservation, 2014, 28(2):1-7, 14.] [30] 谢小立, 青先国, 邹君, 等. 华中地区稻田水分平衡和稻作灌溉生产效率[J]. 农业现代化研究, 2001, 22(2):103-106.[XIE X L, QING X G, ZOU J, et al. Balance of water in rice paddy and irrigation rate in central China[J]. Research of Agricultural Modernization, 2001, 22(2):103-106.] [31] FAN R Q, ZHANG X P, YANG X M, et al. Effects of tillage management on infiltration and preferential flow in a black soil, Northeast China[J]. Chinese Geographical Science, 2013, 23(3):312-320. [32] CHENG J H, ZHANG H J, WANG W, et al. Changes in preferential flow path distribution and its affecting factors in Southwest China[J]. Soil Science, 2011, 176(12):652-660. |
[1] | 陆俊, 黄进良, 王立辉, 裴艳艳. 基于时空数据融合的江汉平原水稻种植信息提取[J]. 长江流域资源与环境, 2017, 26(06): 874-881. |
[2] | 张煦, 马驿, 郑雯, 汪善勤. 基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例[J]. 长江流域资源与环境, 2016, 25(03): 412-419. |
[3] | 邹书婷, 朱媛媛, 张永利, 杨琳, 曾菊新. 江汉平原土地资源诅咒效应研究[J]. 长江流域资源与环境, 2015, 24(12): 2038-2046. |
[4] | 叶文培,王开峰,王凯荣,谢小立,李志国. 长期有机物循环对红壤稻田养分及水稻生长的影响[J]. 长江流域资源与环境, 2008, 17(5): 746-746. |
[5] | 蔡银莺,张安录. 江汉平原农地保护的外部效益研究[J]. 长江流域资源与环境, 2008, 17(1): 98-98. |
[6] | 杨桂芳, 彭红霞, 陈中原, 李长安, 黄俊华, 胡超涌. 兰州与江汉平原有机碳同位素的古气候指示意义对比研究[J]. 长江流域资源与环境, 2005, 14(4): 486-490. |
[7] | 周卫军, 王凯荣, 谢小立, 刘 鑫. 红壤稻田系统水分和养分转换效益研究[J]. 长江流域资源与环境, 2004, 13(5): 471-476. |
|