长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 257-263.doi: 10.11870/cjlyzyyhj201702011

• 自然资源 • 上一篇    下一篇

不同水耕年限稻田土壤水分运动特征研究

杨燕1,2, 易军1,2, 刘目兴1,2, 张君1,2, 李胜龙1,2   

  1. 1. 地理过程分析与模拟湖北省重点实验室, 湖北 武汉 430079;
    2. 华中师范大学城市与环境科学学院, 湖北 武汉 430079
  • 收稿日期:2016-07-14 修回日期:2016-10-23 出版日期:2017-02-20
  • 通讯作者: 刘目兴,E-mail:liumuxing@mial.ccnu.edu.cn E-mail:liumuxing@mial.ccnu.edu.cn
  • 作者简介:杨燕(1991~),女,硕士研究生,主要从事土壤水文研究.E-mail:yangyan@mails.ccnu.edu.cn
  • 基金资助:
    国家自然科学基金青年项目(41601215,41001125);湖北省自然科学基金重点项目(2015CFA141);华中师范大学中央高校基本科研业务费(CCNU16A05015,CCNU15A05002)

CHARACTERISTICS OF SOIL WATER TRANSPORT IN DIFFERENT AGED PADDY FIELDS

YANG Yan1,2, YI Jun1,2, LIU Mu-xing1,2, ZHANG Jun1,2, LI Sheng-long1,2   

  1. 1. Hubei Province Key Laboratory for Geographical Process Analysis & Simulation, Wuhan 430079, China;
    2. College of Urban and Environmental Sciences. Central China Normal University, Wuhan 430079, China
  • Received:2016-07-14 Revised:2016-10-23 Online:2017-02-20
  • Supported by:
    National Natural Science Foundation of China (41601215, 41001125);Key Program of Natural Science Foundation of Hubei Province (2015CFA141);Central China Normal University Fund (CCNU16A05015, CCNU15A05002)

摘要: 利用田间染色示踪和室内样品分析相结合的方法,研究了江汉平原不同水耕年限稻田土壤水分运动特征及其影响因素,期望为制定合理的稻田水分管理措施提供科学依据。结果表明:新稻田(水耕17a)与老稻田(水耕大于100a)土壤理化性质差异显著,引发土壤剖面内不同水分运动特征。新稻田垂直渗漏较老稻田明显,表现为新稻田有更大的染色深度。老稻田染色区域主要集中在耕作层,染色面积为48.52%;犁底层和底土层染色面积较小,仅为3.17%和0.2%。除耕作层外,新稻田其他土层染色面积均大于老稻田,且优先流特征较老稻田明显。老稻田侧向水分运动较新稻田强烈,其侧流剖面的染色面积(15.35%)显著高于新稻田(8.45%),老稻田侧向水流主要发生在犁底层以上。为减少稻田水分渗漏损失,老稻田可以通过减少农田-田埂-沟渠过渡区侧渗实现,而新稻田可采取少量多次的灌溉原则。

关键词: 稻田, 染色示踪, 垂直渗漏, 侧流, 优先流, 江汉平原

Abstract: Based on the field dye tracing experiment and laboratory analysis of soil samples, the characteristics of soil water transport in different aged paddy fields were revealed. This study is expected to provide scientific basis for the reasonable filed water management. The results showed that significant differences of physical and chemical soil properties between new paddy field (NF, aged 17 years) and old paddy field (OF, aged more than 100 years), which was expected to affect the soil water movement processes. Water percolation was more likely to occur in the NF, which was identified by the higher saturated hydraulic conductivity (KS) in the NF (13.98~78.35 cm/d) than that in the OF (4.35~49.37 cm/d). Highest KS was observed in the plow layer, followed by the subsoil layer, and lowest in the plough pan. More obvious vertical percolation was observed in the NF than that in the OF, characterized by the deeper stained depth. For the OF, highest stained area was observed in the plow layer (48.52%), followed by the subsoil layer (3.17%), and lowest in the plough pan (0.20%). Except for the plow layer, NF was characterized by higher stained area and more obvious preferential flow paths in other soil layers than the OF. Stronger lateral water flow was observed in the OF (15.35%) than that in the NF (8.45%), which was characterized by the more stained area in the OF than the NF, and mainly distributed in the plow layer. In order to reduce the water losses in the paddy field, more attention should focus on the lateral water lose in the inner field-bund-canal transition zone for the OF, and the irrigation strategies of more times with less single irrigation amount was suitable for the NF.

Key words: paddy field, dye tracing, vertical percolation, lateral flow, preferential flow, Jianghan Plain

中图分类号: 

  • S152.5
[1] 刘丙军, 陈晓宏, 张灵, 等. 中国南方季节性缺水地区水资源合理配置研究[J]. 水利学报, 2007, 38(6):732-737.[LIU B J, CHEN X H, ZHANG L, et al. Optimal deployment of water resources for seasonal water shortage area in South China[J]. Journal of Hydraulic Engineering, 2007, 38(6):732-737.]
[2] 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2):116-120.[ZHANG L P, XIA J, HU Z F. Situation and problem analysis of water resource security in China[J]. Resources and Environment in the Yangtze Basin, 2009, 18(2):116-120.]
[3] 叶玉适, 梁新强, 李亮, 等. 不同水肥管理对太湖流域稻田磷素径流和渗漏损失的影响[J]. 环境科学学报, 2015, 35(4):1125-1135.[YE Y S, LIANG X Q, Li L, et al. Effects of different water and nitrogen managements on phosphorus loss via runoff and leaching from paddy fields in Taihu Lake basin[J]. Acta Scientiae Circumstantiae, 2015, 35(4):1125-1135.]
[4] 马经安, 李红清. 浅谈国内外江河湖库水体富营养化状况[J]. 长江流域资源与环境, 2002, 11(6):575-578.[MA J A, LI H Q. Preliminary discussion on eutrophication status of lakes, reservoirs and rivers in China and overseas[J]. Resources and Environment in the Yangtze Basin, 2002, 11(6):575-578.]
[5] 张润清. 江汉平原农产品加工业发展战略研究[D]. 武汉:华中农业大学博士学位论文, 2005.[ZHANG R Q. A research on developing strategy of agro-industry in Jiang-han Plain[D]. Wuhan:Doctor Dissertation of Huazhong Agricultural University, 2005.]
[6] 陈锋, 谢正辉. 农作物分布对南水北调受水区域陆面过程模拟的影响[J]. 地理科学进展, 2008, 27(4):28-36.[CHEN F, XIE Z H. Effects of crop distribution on land surface simulations over the intake area of the South-to-North water transfer project[J]. Progress in Geography, 2008, 27(4):28-36.]
[7] 张落成. 我国粮食生产布局变化特点及其成因分析[J]. 长江流域资源与环境, 2000, 9(2):221-228.[ZHANG L C. Food distribution change in China and its reasons[J]. Resources and Environment in the Yangtze Basin, 2000, 9(2):221-228.]
[8] 来剑斌, 王全九. 土壤水分特征曲线模型比较分析[J]. 水土保持学报, 2003, 17(1):137-140.[LAI J B, WANG Q J. Comparison of soil water retention curve model[J]. Journal of Soil and Water Conservation, 2003, 17(1):137-140.]
[9] BAIER W, ROBERTSON G W. Soil moisture modelling-conception and evolution of the VSMB[J]. Canadian Journal of Soil Science, 1996, 76(3):251-261.
[10] BOUMAN B A M, KROPFF M J, TUONG T P, et al. ORYZA2000:Modeling lowland rice[M]. Los Baños, Philippines:International Rice Research Institute, 2001.
[11] WEILER M, FLÜHLER M. Inferring flow types from dye patterns in macroporous soils[J]. Geoderma, 2004, 120(1/2):137-153.
[12] BOUMA J, DEKKER L W. A case study on infiltration into dry clay soil I. Morphological observations[J]. Geoderma, 1978, 20(1):27-40.
[13] KUNG K J S. Preferential flow in a sandy vadose zone:2. Mechanism and implications[J]. Geoderma, 1990, 46(1/3):59-71.
[14] ALAOUI A, GOETZ B. Dye tracer and infiltration experiments to investigate macropore flow[J]. Geoderma, 2008, 144(1/2):279-286.
[15] LAINE-KAULIO H, BACKNÄS S, KOIVUSALO H, et al. Dye tracer visualization of flow patterns and pathways in glacial sandy till at a boreal forest hillslope[J]. Geoderma, 2015, 259-260:23-34.
[16] 闫加力, 李懋, 熊双莲, 等. 旱改水对水稻幼苗生长的影响及秸秆的改良作用[J]. 中国生态农业学报, 2015, 23(5):554-562.[YAN J L, LI M, XIONG S L, et al. Effect of reclaiming cotton field into paddy and straw application on rice seedling growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5):554-562.]
[17] DUNN B W, DUNN T S. Influence of soil type on severity of straighthead in rice[J]. Communications in Soil Science and Plant Analysis, 2012, 43(12):1705-1719.
[18] 陈芳, 张海涛, 王天巍, 等. 江汉平原典型土壤的系统分类及空间分布研究[J]. 土壤学报, 2014, 51(4):761-771.[CEHN F, ZHANG H T, WANG T W, et al. Taxonomy and spatial distribution of soils typical of Jianghan Plain[J]. Acta Pedologica Sinica, 2014, 51(4):761-771.]
[19] 武汉市农业气象试验站. 江汉平原地下水位变化规律初探[J]. 中国农业大学学报, 1990, 16(S3):111-115.[Wuhan Agrometerological Experimental Station. Initial approach to the change law of the underground water level in Jiang-han Plain[J]. Acta Agriculturae Universitatis Pekinensis, 1990, 16(S3):111-115.]
[20] 程东娟, 张亚丽. 土壤物理实验指导[M]. 北京:中国水利水电出版社, 2012.
[21] 田香姣, 程金花, 杜士才, 等. 2种土地利用方式下的优先流特征[J]. 水土保持学报, 2014, 28(3):37-41.[TIAN X J, CHENG J H, DU S C, et al. Characteristics of preferential flow under two kinds of land use patterns[J]. Journal of Soil and Water Conservation, 2014, 28(3):37-41.]
[22] 田香姣. 四面山两种土地利用方式下的优先流特征[D]. 北京:北京林业大学硕士学位论文, 2015.[TIAN X J. Characteristics of preferential flow under two kinds of land use patterns in simian mountain[D]. Beijing:Master Dissertation of Beijing Forestry University, 2015.]
[23] JANSSEN M, LENNARTZ B. Horizontal and vertical water and solute fluxes in paddy rice fields[J]. Soil and Tillage Research, 2007, 94(1):133-141.
[24] 吕文星. 三峡库区三种土地利用方式优先流特征及其对硝态氮运移的影响[D]. 北京:北京林业大学博士学位论文, 2013.[LV W X. Characteristics of preferential flow and its effect on Nitrate Nitrogen transport in three land use types of the three gorges reservoir area[D]. Beijing:Doctor Dissertation of Beijing Forestry University, 2013.]
[25] JANSSEN M, LENNARTZ B. Water losses through paddy bunds:methods, experimental data, and simulation studies[J]. Journal of Hydrology, 2009, 369(1/2):142-153.
[26] JANSSEN M, LENNARTZ B. Characterization of preferential flow pathways through paddy bunds with dye tracer tests[J]. Soil Science Society of America Journal, 2008, 72(6):1756-1766.
[27] 张中彬. 红壤性水稻土裂隙特征及其对优势流的影响[D]. 北京:中国科学院大学博士学位论文, 2013.[ZHANG Z B. Characteristics of cracks in reddish paddy soil and its consequences on preferential flow[D]. Beijing:Doctor Dissertation of University of Chinese Academy of Sciences, 2013.]
[28] 高朝侠, 徐学选, 赵传普, 等. 土壤初始含水率对优先流的影响[J]. 中国水土保持科学, 2014, 12(1):46-54.[GAO Z X, XU X X, ZHAO C P, et al. Effect of initial soil water content on preferential flow[J]. Science of Soil and Water Conservation, 2014, 12(1):46-54.]
[29] 张欣, 张洪江, 张福明, 等. 西南山区农地土壤前期含水量对优先流的影响[J]. 水土保持学报, 2014, 28(2):1-7, 14.[ZHANG X, ZHANG H J, ZHANG F M, et al. Effect of antecedent soil moisture on preferential flow in agricultural land of Southwest mountains[J]. Journal of Soil and Water Conservation, 2014, 28(2):1-7, 14.]
[30] 谢小立, 青先国, 邹君, 等. 华中地区稻田水分平衡和稻作灌溉生产效率[J]. 农业现代化研究, 2001, 22(2):103-106.[XIE X L, QING X G, ZOU J, et al. Balance of water in rice paddy and irrigation rate in central China[J]. Research of Agricultural Modernization, 2001, 22(2):103-106.]
[31] FAN R Q, ZHANG X P, YANG X M, et al. Effects of tillage management on infiltration and preferential flow in a black soil, Northeast China[J]. Chinese Geographical Science, 2013, 23(3):312-320.
[32] CHENG J H, ZHANG H J, WANG W, et al. Changes in preferential flow path distribution and its affecting factors in Southwest China[J]. Soil Science, 2011, 176(12):652-660.
[1] 陆俊, 黄进良, 王立辉, 裴艳艳. 基于时空数据融合的江汉平原水稻种植信息提取[J]. 长江流域资源与环境, 2017, 26(06): 874-881.
[2] 张煦, 马驿, 郑雯, 汪善勤. 基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例[J]. 长江流域资源与环境, 2016, 25(03): 412-419.
[3] 邹书婷, 朱媛媛, 张永利, 杨琳, 曾菊新. 江汉平原土地资源诅咒效应研究[J]. 长江流域资源与环境, 2015, 24(12): 2038-2046.
[4] 叶文培,王开峰,王凯荣,谢小立,李志国. 长期有机物循环对红壤稻田养分及水稻生长的影响[J]. 长江流域资源与环境, 2008, 17(5): 746-746.
[5] 蔡银莺,张安录. 江汉平原农地保护的外部效益研究[J]. 长江流域资源与环境, 2008, 17(1): 98-98.
[6] 杨桂芳, 彭红霞, 陈中原, 李长安, 黄俊华, 胡超涌. 兰州与江汉平原有机碳同位素的古气候指示意义对比研究[J]. 长江流域资源与环境, 2005, 14(4): 486-490.
[7] 周卫军, 王凯荣, 谢小立, 刘 鑫. 红壤稻田系统水分和养分转换效益研究[J]. 长江流域资源与环境, 2004, 13(5): 471-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[5] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[8] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[9] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[10] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .