长江流域资源与环境 >> 2017, Vol. 26 >> Issue (04): 641-648.doi: 10.11870/cjlyzyyhj201704018

• 自然灾害 • 上一篇    

从气溶胶微物理属性分析冬季重庆地区霾的垂直分布特征

刘海晨1, 丁明月1, 江文华2, 陈勇航1, 张华3, 杜豪杰1, 李嘉栋1, 邱靖涵1   

  1. 1. 东华大学环境科学与工程学院, 上海 201620;
    2. 重庆气象台, 重庆 401147;
    3. 中国气象局国家气候中心, 北京 100081
  • 收稿日期:2016-02-19 修回日期:2016-09-07 出版日期:2017-04-20
  • 通讯作者: 陈勇航 E-mail:yonghangchen@dhu.edu.cn
  • 作者简介:刘海晨(1991~),男,主要研究方向为大气环境.E-mail:liuhaichen117@163.com
  • 基金资助:
    国家自然科学基金项目(91644211,41575002,41375021);重庆市气象局开放式研究基金项目(kfjj-201203)

VERTICAL DISTRIBUTION OF ATMOSPHERIC AEROSOL MICROPHYSICAL PROPERTIES OVER CHONGQING AREA DURING HAZE PERIODS IN WINTER

LIU Hai-chen1, DING Ming-yue1, JIANG Wen-hua2, CHEN Yong-hang1, ZHANG Hua3, DU Hao-jie1, LI Jia-dong1, QIU Jing-han1   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
    2. Chongqing Meteorological Observatory, Chongqing 401147, China;
    3. National Climate Center of China, Meteorological Administration, Beijing 100081, China
  • Received:2016-02-19 Revised:2016-09-07 Online:2017-04-20
  • Supported by:
    National Natrual Science Foundatoon (91644211, 41575002, 41375021);Open Research Fund of Chongqing Meteorological Bureau)kfjj-201203)

摘要: 采用2007~2011年冬季(12月~次年2月)CALIPSO星载激光雷达L1监测数据,通过分析532 nm总后向散射系数、体积退偏比和色比,对重庆地区冬季霾期间气溶胶光学和微物理特性的垂直分布进行了研究。结果表明:重庆地区冬季霾期间,大气散射能力随高度减弱,在0~1 km高度最强;各高度层气溶胶粒子规则性与粒径大小的分布情况与全年总体分布情况基本相同,但变化趋势单调性更强,0~1 km高度层规则的、大颗粒气溶胶所占比例最大,3~4 km高度不规则的、小颗粒气溶胶所占比例最大;年际变化上,气溶胶散射强度逐年增强,其中2008~2010年变化较小,2011年明显增强;各年均以规则的、小颗粒气溶胶为主,2011年不规则气溶胶所占比例最大,而大颗粒气溶胶所占比例逐年增大。

关键词: CALIPSO, 气溶胶, 霾, 垂直分布

Abstract: Based on the onboard LIDAR data from CALIPSO satellite of National Aeronautics and Space Administration (NASA) from December 2007 to February 2011, the vertical distribution of optical and micro-physical properties of aerosols around Chongqing during the haze periods in winter were revealed by analyzing the parameters of 532 nm total attenuated backscatter coefficient, volume depolarization ratio and total attenuated color ratio. The results showed that, during haze periods in winter, the scattering ability of atmospheric aerosols generally decreased with increasing altitude, being strongest in low troposphere (0-1km). The distribution of regularity and size of particles within the altitude range of 1-4km were the same throughout the year, but the trend monotonous was stronger. The proportion of regular aerosols and coarse particles were the most in low troposphere (0-1km), and the proportion of irregular aerosols and fine particles were the most in middle troposphere (3-4km). Comparing the situation in each year, the scattering intensity had an increasing trend. The scattering intensity from 2008 to 2010 varied within a small range, there was a significant increasing in 2011. Regular aerosols and fine particles were the dominant aerosols from 2007 to 2011, the proportion of irregular aerosols were the most in 2011. In addition, the proportion of coarse particles was increasing year by year.

Key words: CALIPSO, aerosol, haze, vertical distribution

中图分类号: 

  • P401
[1] CONTINI D,BELOSI F,GAMBARO A,et al.Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon:an analysis of possible aerosol sources[J].Journal of Environmental Sciences,2012,24(11):1954-1965.
[2] ZHANG J,ZHANG Q,TANG C G,et al.Aerosol structure and vertical distribution in a multi-source dust region[J].Journal of Environmental Sciences,2012,24(8):1466-1475.
[3] 胡荣章,刘红年,张美根,等.南京地区大气灰霾的数值模拟[J].环境科学学报,2009,29(4):808-814.[HU R Z,LIU H N,ZHANG M G,et al.Simulation of brownish haze in urban areas of Nanjing[J].Acta Scientiae Circumstantiae,2009,29(4):808-814.]
[4] JACOBSON M Z.Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J].Nature,2001,409(6821):695-697.
[5] TAN J H,DUAN J C,HE K B,et al.Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou[J].Journal of Environmental Sciences,2009,21(6):774-781.
[6] SUN Y,ZHUANG G,TANG A A,et al.Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J].Environmental Science&Technology,2006,40(10):3148-3155.
[7] PENNER J E,DONG X Q,CHEN Y.Observational evidence of a change in radiative forcing due to the indirect aerosol effect[J].Nature,2004,427(6971):231-234.
[8] MENON S,HANSEN J,NAZARENKO L.Climate effects of black carbon aerosols in China and India[J].Science,2002,297(5590):2250-2253.
[9] YAN P,TANG J,HUANG J,et al.The measurement of aerosol optical properties at a rural site in Northern China[J].Atmospheric Chemistry and Physics,2008,8(8):2229-2242.
[10] HE X,LI C C,LAU A K H,et al.An intensive study of aerosol optical properties in Beijing urban area[J].Atmospheric Chemistry and Physics,2009,9(22):8903-8915.
[11] LYAMANI H,OLMO F J,ALADOS-ARBOLEDAS L.Physical and optical properties of aerosols over an urban location in Spain:seasonal and diurnal variability[J].Atmospheric Chemistry and Physics,2010,10(1):239-254.
[12] 江玉华,王强,李子华,等.重庆城区浓雾的基本特征[J].气象科技,2004,32(6):450-455.[JIANG Y H,WANG Q,LI Z H,et al.Characteristics of fog in Chongqing urban area[J].Meteorological Science and Technology,2004,32(6):450-455.]
[13] 李礼,杨灿,余家燕,等.重庆典型灰霾天气下大气气溶胶的激光雷达探测[J].环境科学与管理,2012,37(1):143-146.[LI L,YANG C,YU J Y,et al.Atmospheric aerosol detection with lidar under typical haze weather in Chongqing[J].Environmental Science and Management,2012,37(1):143-146.]
[14] 黄伟,翟崇治,余家燕,等.重庆区域性灰霾天气下大气污染分析初探[J].西南师范大学学报(自然科学版),2012,37(7):142-146.[HUANG W,ZHAI C Z,YU J T,et al.Tentative analysis of air pollution in Chongqing under haze weather[J].Journal of Southwest China Normal University (Natural Science Edition),2012,37(7):142-146.]
[15] CLAQUIN T,SCHULZ M,BALKANSKI Y,et al.Uncertainties in assessing radiative forcing by mineral dust[J].Tellus B,1998,50(5):491-505.
[16] 刘刚,史伟哲,尤睿.美国云和气溶胶星载激光雷达综述[J].航天器工程,2008,17(1):78-84.[LIU G,SHI W Z,YOU R.Cloud-aerosol Lidar of America[J].Spacecraft Engineering,2008,17(1):78-84.]
[17] 中国气象局.QX/T 113-2010霾的观测和预报等级[S].北京:气象出版社,2010.[China Meteorological Administration.QX/T 113-2010 Observation and forecasting levels of haze[S].Beijing:China Meteorological Press,2010.]
[18] 柯宗建,汤洁.北京上甸子秋冬季大气气溶胶的散射特征[J].大气科学,2007,31(3):553-559.[KE Z J,TANG J.An observation study of the scattering properties of aerosols over Shangdianzi,Beijing[J].Chinese Journal of Atmospheric Sciences,2007,31(3):553-559.]
[19] 蔡斌彬.城市霾天气下气溶胶的散射消光特征及其影响分析[D].天津:南开大学硕士学位论文,2007:29-52.
[20] 徐梅,韩素芹,武国良,等.天津市区秋冬季大气气溶胶散射系数的变化特征[J].气象,2011,37(12):1566-1571.[XU M,HAN S Q,WU G L,et al.The scattering properties of aerosols in urban site of Tianjin[J].Meteorological Monthly,2011,37(12):1566-1571.]
[21] REID J S,HOBBS P V,FEREK R J,et al.Physical,chemical,and optical properties of regional hazes dominated by smoke in Brazil[J].Journal of Geophysical Research:Atmospheres,1998,103(D24):32059-32080.
[22] 吴兑,邓雪娇,毕雪岩,等.细粒子污染形成灰霾天气导致广州地区能见度下降[J].热带气象学报,2007,23(1):1-6.[WU D,DENG X J,BI X Y,et al.Study on the visibility reduction caused by atmospheric Hazein Guangzhou area[J].Journal of Tropical Meteorology,2007,23(1):1-6.]
[23] 刘新罡,张远航,曾立民,等.广州市大气能见度影响因子的贡献研究[J].气候与环境研究,2006,11(6):733-738.[LIU X G,ZHANG Y H,ZENG L M,et al.Research on the influential factor of visibility reduction in Guangzhou[J].Climatic and Environmental Research,2006,11(6):733-738.]
[24] 吕梦瑶.重庆城市灰霾的统计分析与模拟研究[D].南京:南京大学硕士学位论文,2011:1-136.[LV M Y.Statistical analysis and numerical simulation on urban haze in Chongqing area[D].Nanjing:Master Dissertation of Nanjing University,2011:1-136.]
[25] 董旭辉,祁辉,任立军,等.偏振激光雷达在沙尘暴观测中的数据解析[J].环境科学研究,2007,20(2):106-111.[DONG X H,QI H,REN L J,et al.Application and data demonstration of lidar in sandstorm observation[J].Research of Environmental Sciences,2007,20(2):106-111.]
[26] LIU Z Y,LIU D,HUANG J P,et al.Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations[J].Atmospheric Chemistry and Physics Discussions,2008,8(2):5957-5977.
[27] HUANG J P,MINNIS P,YI Y H,et al.Summer dust aerosols detected from CALIPSO over the Tibetan Plateau[J].Geophysical Research Letters,2007,34(18):L18805.
[1] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1-11.
[2] 温康民, 史军, 马井会. 1961~2013年长江三角洲地区霾日季节特征及变化分析[J]. 长江流域资源与环境, 2016, 25(04): 621-629.
[3] 和丽萍, 孟广涛, 李贵祥, 李品荣, 柴勇. 金沙江头塘小流域人工林有机碳及其剖面分布特征[J]. 长江流域资源与环境, 2016, 25(03): 476-485.
[4] 刘振波, 张明明, 葛云健, 邱斌. 基于MODIS AOD数据的南京市大气能见度估算[J]. 长江流域资源与环境, 2015, 24(09): 1451-1457.
[5] 唐昀凯, 刘胜华. 城市土地利用类型与PM2.5浓度相关性研究——以武汉市为例[J]. 长江流域资源与环境, 2015, 24(09): 1458-1463.
[6] 付晓辉, 肖刚, 姜玉印, 高亮. 近53年宜昌市霾的演变特征及气象因子诊断[J]. 长江流域资源与环境, 2010, 19(2): 164-.
[7] 许峰, 祁士华, 高媛, 邢新丽. 绵阳市代表性点位土壤多环芳烃剖面分布特征[J]. 长江流域资源与环境, 2009, 18(2): 192-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .