长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 902-914.doi: 10.11870/cjlyzyyhj201706013

• 生态环境 • 上一篇    下一篇

基于SWAT模型的太湖西北部30a来氮磷的输出特征

沈胤胤1,2,3, 胡雷地4,5, 姜泉良1, 江俊武1, 吴亚林1, 黄涛1,2,3, 杨浩1, 宋挺6, 黄昌春1,2,3,4   

  1. 1. 虚拟地理环境教育部重点实验室(南京师范大学), 江苏 南京 210023;
    2. 江苏省地理环境演化国家重点实验室培育建设点, 江苏 南京 210023;
    3. 江苏省地理信息资源开发与利用协同创新中心, 江苏 南京 210023;
    4. 南京师范大学地理科学学院苏州警用地理信息重点实验室, 江苏 南京 210023;
    5. 苏州市公安局, 江苏 苏州 215000;
    6. 无锡市环境监测站, 江苏 无锡 214000
  • 收稿日期:2016-11-09 修回日期:2017-02-14 出版日期:2017-06-20
  • 通讯作者: 黄昌春,E-mail:huangchangchun@njnu.edu.cn E-mail:huangchangchun@njnu.edu.cn
  • 作者简介:沈胤胤(1991~),男,硕士研究生,研究方向为水模型应用与遥感.E-mail:shenyinyin1991@163.com
  • 基金资助:
    国家自然科学基金面上基金(41571324);国家自然科学基金青年基金项目(41503075);中国博士后基金面试资助项目(2015M581826)

CHARACTERISTICS OF NITROGEN AND PHOSPHORUS LOAD IN THE PAST THREE DECADES IN THE NORTHWEST OF TAIHU BASIN BASED ON THE SWAT MODEL

SHEN Yin-yin1,2,3, HU Lei-di4,5, JIANG Quan-liang1, JIANG Jun-wu1, WU Ya-lin1, HUANG Tao1,2,3, YANG Hao1, SONG Ting6, HUANG Chang-chun1,2,3,4   

  1. 1. Key Laboratory of Virtual Geographic Environment(Nanjing Normal University), Ministry of Education, Nanjing 210023, China;
    2. State Key Laboratory Cultivation Base of Geographical Environment Evolution(Jiangsu Province), Nanjing 210023, China;
    3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China;
    4. Suzhou police key laboratory of geographic information, Nanjing Normal University, Nanjing 210023, China;
    5. Suzhou Public Security Bureau, Suzhou 215000, China;
    6. Wuxi city environmental monitoring center, Wuxi 214000, China
  • Received:2016-11-09 Revised:2017-02-14 Online:2017-06-20
  • Supported by:
    National Natural Science Foundation of China (41571324);National Science Fund for Distinguished Young Scholars (41503075);ChinaPostdoctoral Science Foundation (2015M581826)

摘要: 随着工业的迅速发展和农业生产方式的转变,使得太湖富营养化现象日趋严重,对流域内生态环境构成极大的威胁。以研究区6个时期土地利用数据和30a逐日降雨数据为模型的主要输入变量,利用SWAT模型分别对研究区内6个不同时期营养盐输出进行模拟研究,得到研究区内30a时间尺度(1984~2013年)营养盐输出情况。根据模型输出结果探究研究区内营养盐输出与降雨量、径流量以及土地利用变化的关系。以2009~2013年宜兴站径流数据和水质数据作为模型的率定和验证数据,总氮(TN)和总磷(TP)在模型率定期确定系数R2为0.76和0.92,纳什效率系数Ens为0.76和0.79,验证期确定系数R2为0.66和0.95,纳什效率系数Ens为0.6和0.54,模拟结果较好。结果表明:营养盐输出与降雨在时间是呈现较强的相关性,但是在空间上降雨与营养盐输出相关性不明显;土地利用类型与营养盐输出密切相关,耕地和建设用地是研究区主要的营养盐输出源,土地利用类型空间分布与TN、TP空间分布相关系数分别为0.74和0.73。将为太湖流域非点源污染控制和治理提供理论支撑及数据基础。

关键词: 太湖流域, 营养盐, 土地利用变化, SWAT模型

Abstract: With the rapid development of industry and transformation of agricultural production, the phenomenon of eutrophication in Taihu Basin is becoming more and more serious, which poses a great threat to the ecological environment in the basin. This paper used land use data of six periods and daily rainfall data from 1984 to 2013 as the main input variables in the model. According to the land use data, we divided the time interval into six time periods. With the SWAT model (the Soil and Water Assessment Tool which can simulate soil water sediment and nutrient) to simulate the nutrients export in the study area of these six different periods, we calculated nutrients export in the past three decades (1984–2013) in the northwest of Taihu Basin. According to the model results, we explored the relationship between nutrients export, rainfall, runoff and the land-use change. The data of runoff and water quality recorded by the Yixing water station from 2009 to 2013 was used to calibrate and validate the model. The coefficient of determination R2 of total nitrogen and total phosphorus in calibration period was 0.76 and 0.92, respectively. The Nash coefficient of total nitrogen and total phosphorus was 0.76 and 0.79, respectively. The coefficient of determination R2 in the validation period was 0.66 and 0.95 and the Nash coefficient was 0.6 and 0.54, respectively. The results suggest that nutrients export was significantly correlated with the amount of rainfall and runoff over time, which were mainly concentrated in May to August every year, and were low in November to February of next year. However, this correlation was not significant in the space. Nutrients export was closely related to land use types, and the main nutrients export in the study area was concentrated in urban lands and agricultural lands. Agricultural lands were the main source of nutrients in the study area, but the flux of nutrients export in urban lands was higher than that in agricultural lands. The types of land use in study area showed a pattern of wasteland > urban land > agricultural land > forest in terms of flux of nutrients export. The spatial distribution of nutrients export was also closely related to the spatial distribution of land use types. The export of nutrients in urban lands and agricultural lands was relatively higher than other land uses. This study will provide theoretical support and data base for the control and management of non-point source pollution in Taihu Basin.

Key words: Taihu Basin, nutrients, land use change, SWAT model

中图分类号: 

  • X524
[1] 舒凤月, 刘玉配, 赵 颖, 等. 南四湖水体氮、磷营养盐时空分布特征及营养状态评价[J]. 环境科学, 2012, 33(11):3748-3752.[SHU F Y, LIU Y P, ZHAO Y, et al. Spatio-temporal distribution of TN and TP in water and evaluation of eutrophic state of Lake Nansi[J]. Environmental Science, 2012, 33(11):3748-3752.]
[2] 王 鹏, 陈多多, 陈 波. 赣江水体氮磷营养盐分布特征与污染来源[J]. 江西师范大学学报(自然科学版), 2015, 39(4):435-440.[WANG P, CHEN D D, CHEN B. The distribution characters and pollution sources of nitrogen and phosphorus nutrients in Ganjiang River[J]. Journal of Jiangxi Normal University (Natural Science), 2015, 39(4):435-440.]
[3] 许朋柱, 秦伯强, BEHRENDT H, 等. 太湖西南部河流流域的营养盐排放[J]. 湖泊科学, 2007, 19(5):544-551.[XU P Z, QIN B Q, BEHRENDT H, et al. Estimation of nutrient emissions into the river system of the southwestern Taihu Basin[J]. Journal of Lake Sciences, 2007, 19(5):544-551.]
[4] 王 静, 丁树文, 蔡崇法, 等. AnnAGNPS模型在丹江库区黑沟河流域的模拟应用与检验[J]. 土壤通报, 2009, 40(4):907-912.[WANG J, DING S W, CAI C F, et al. Applying and testing AnnAGNPS for pollutant loads of Heigou watershed in Danjiang reservoir[J]. Chinese Journal of Soil Science, 2009, 40(4):907-912.]
[5] 李兆富, 杨桂山, 李恒鹏. 西笤溪流域不同土地利用类型营养盐输出系数估算[J]. 水土保持学报, 2007, 21(1):1-4, 34.[LI Z F, YANG G S, LI H P. Estimation of nutrient export coefficient from different land use types in Xitiaoxi watershed[J]. Journal of Soil and Water Conservation, 2007, 21(1):1-4, 34.]
[6] ARNOLD J G, SRINIVASAN R, MUTTIAH R S, et al. Large area hydrologic modeling and assessment part I:model development1[J]. Journal of the American Water Resources Association, 1998, 34(1):73-89.
[7] KINIRY J R, WILLIAMS J R, SRINIVASAN R. Soil and water assessment tool user's manual[J]. Nature Clinical Practice Rheumatology, 2000, 3(3):119.
[8] ARNOLD J G, WILLIAMS J R, NICKS A D, et al. SWRRB:a basin scale simulation model for soil and water resources management[M]. College Station, Texas:Texas A & M University Press, 1990:309.
[9] KNISEL W G. CREAMS:A field-scale model for chemicals, runoff, and erosion from agricultural management systems[R]. Washington DC:U.S. Department of Agriculture, 1980.
[10] LEONARD R A, KNISEL W G, STILL D A. GLEAMS:Groundwater loading effects of agricultural management systems[J]. Transactions of the ASAE, 1987, 30(5):1403-1418.
[11] WILLIAMS J R, JONES C A, DYKE P T. A modeling approach to determining the relationship between erosion and soil productivity[J]. Transactions of the ASAE, 1984, 27(1):129-144.
[12] GRIZZETTI B, BOURAOUI F, GRANLUND K, et al. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model[J]. Ecological Modelling, 2003, 169(1):25-38.
[13] LEE M, PARK G, PARK M, et al. Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and QuickBird high resolution satellite imagery[J]. Journal of Environmental Sciences, 2010, 22(6):826-833.
[14] SANTHI C, SRINIVASAN R, ARNOLD J G, et al. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas[J]. Environmental Modelling & Software, 2006, 21(8):1141-1157.
[15] BOURAOUI F, BENABDALLAH S, JRAD A, et al. Application of the SWAT Model on the Medjerda River Basin (Tunisia)[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(8/10):497-507.
[16] 陈 媛, 郭秀锐, 程水源, 等. SWAT模型在三峡库区流域非点源污染模拟的适用性研究[J]. 安全与环境学报, 2012, 12(2):146-152.[CHEN Y, GUO X R, CHENG S Y, et al. On the applicability of SWAT model to the nonpoint source pollution in the watershed of the Three-Gorge Reservoir[J]. Journal of Safety and Environment, 2012, 12(2):146-152.]
[17] 秦耀民, 胥彦玲, 李怀恩. 基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究[J]. 环境科学学报, 2009, 29(2):440-448.[QIN Y M, XU Y L, LI H E. SWAT model of non-point source pollution under different land use scenarios in the Heihe river basin[J]. Acta Scientiae Circumstantiae, 2009, 29(2):440-448.]
[18] 张韶华. 基于GIS与SWAT模型的滇池流域不同坡度下土地利用/覆被变化对农业非点源污染的影响研究[D]. 昆明:云南师范大学硕士学位论文, 2014:1-69.[ZHANG S H. Effects of land use/land cover change on agricultural non-point source pollution in different slope of Dianchi River Basin Based on GIS and SWAT model[D]. Kunming:Master Dissertation of Yunnan Normal University, 2014:1-69.]
[19] 李海涛, 田庆久. ASTER数据产品的特性及其计划介绍[J]. 遥感信息, 2004(3):53-55, 47.[LI H T, TIAN Q J. An introduction to ASTER data and ASTER mission[J]. Remote Sensing Information, 2004(3):53-55, 47.]
[20] 李 硕, 赖正清, 王 桥, 等. 基于SWAT模型的平原河网区水文过程分布式模拟[J]. 农业工程学报, 2013, 29(6):106-112.[LI S, LAI Z Q, WANG Q, et al. Distributed simulation for hydrological process in Plain River network region using SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6):106-112.]
[21] 芮孝芳, 朱庆平. 分布式流域水文模型研究中的几个问题[J]. 水利水电科技进展, 2002, 22(3):56-58.[RUI X F, ZHU Q P. Some problems in research of distributed watershed hydrological model[J]. Advances in Science and Technology of Water Resources, 2002, 22(3):56-58.]
[22] POPOV E G. Gidrologicheskie prognozy (hydrological forecasts)[M]. Leningrad:Gidrometeoizdat, 1979.
[23] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域径流模拟[C]//2008年湖北省气象学会学术年会学术论文详细文摘汇集. 烟台:湖北省科学技术协会, 2008:59-67.[XIA Z H, ZHOU Y H, XU H M. Runoff simulation of Hanjiang River Basin Based on SWAT model[C]//Meteorological Monthly. Yantai:Hubei Association for Science & Technology, 2008:59-67.]
[24] 王 森, 朱昌雄, 耿 兵. 土壤氮磷流失途径的研究进展[J]. 中国农学通报, 2013, 29(33):22-25.[WANG S, ZHU C X, GENG B. Research advancement in loss pathways of nitrogen and phosphorus in soils[J]. Chinese Agricultural Science Bulletin, 2013, 29(33):22-25.]
[25] WELLER D E, JORDAN T E, CORRELL D L, et al. Effects of land-use change on nutrient discharges from the Patuxent river watershed[J]. Estuaries, 2003, 26(2A):244-266.
[26] 陆安详, 赵云龙, 王纪华, 等. 不同土地利用类型下氮、磷在土壤剖面中的分布特征[J]. 生态学报, 2007, 27(9):3923-3929.[LU A X, ZHAO Y L, WANG J H, et al. Distribution characteristics of nitrogen and phosphorus in agricultural soil profiles under different landuse[J]. Acta Ecologica Sinica, 2007, 27(9):3923-3929.]
[27] 郭红丽, 陈家栋, 姜红梅, 等. 南京市土壤氮和磷的分布及其土地利用效应[J]. 安徽农业科学, 2013, 41(3):1061-1064.[GUO H L, CHEN J D, JIANG H M, et al. Soil nitrogen and phosphorus distribution and its land use effect in Nanjing[J]. Journal of Anhui Agricultural Sciences, 2013, 41(3):1061-1064.]
[28] 赵 峰, 范海峰, 田竹君, 等. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. 吉林大学学报(地球科学版), 2005, 35(5):661-666.[ZHAO F, FAN H F, TIAN Z J, et al. Analysis of different land use patterns and soil erosion change in the Middle of Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(5):661-666.]
[1] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[2] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[3] 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453.
[4] 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452.
[5] 吴见, 王帅帅, 谭靖. 基于安徽省土地利用变化的地形梯度效应分析[J]. 长江流域资源与环境, 2016, 25(02): 239-248.
[6] 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155.
[7] 吴洁璇, 陈振杰, 李满春, 姜朋辉, 骈宇哲. 基于邻接关系的土地利用变化空间关联规则研究[J]. 长江流域资源与环境, 2015, 24(09): 1537-1544.
[8] 刘超琼, 彭开丽, 陈红蕾. 安徽省土地利用变化下的生态敏感性时空规律[J]. 长江流域资源与环境, 2015, 24(09): 1584-1590.
[9] 何建华, 王宵君, 杜超, 李纯, 施璇. 武汉城市圈土地利用变化系统仿真模拟与驱动力分析[J]. 长江流域资源与环境, 2015, 24(08): 1270-1278.
[10] 李正阳, 袁旭音, 王欢, 许海燕, 陈海龙, 鲁朝朋. 西苕溪干流水体、悬浮物和表层沉积物中营养盐分布特征与水质评价[J]. 长江流域资源与环境, 2015, 24(07): 1150-1156.
[11] 王军, 顿耀龙. 土地利用变化对生态系统服务的影响研究综述[J]. 长江流域资源与环境, 2015, 24(05): 798-808.
[12] 张利平, 陈小凤, 张晓琳, 宋星原. VIC模型与SWAT模型在中小流域径流模拟中的对比研究[J]. 长江流域资源与环境, 2009, 18(8): 745-.
[13] 宋玉芝,秦伯强, 高光. 附着生物对富营养化水体氮磷的去除效果[J]. 长江流域资源与环境, 2009, 18(2): 180-.
[14] 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33-.
[15] 涂小松,濮励杰,吴 骏,朱 明. 基于SLEUTH模型的无锡市区土地利用变化情景模拟[J]. 长江流域资源与环境, 2008, 17(6): 860-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 龙开胜, 陈利根, 李明艳. 工业化、城市化对耕地数量变化影响差异分析[J]. 长江流域资源与环境, 2008, 17(4): 579 .
[3] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 赵 媛,郝丽莎. 江苏省电力工业空间结构优化研究[J]. 长江流域资源与环境, 2006, 15(3): 292 -297 .
[6] 张 燕,彭补拙,窦贻俭,金 峰,杨 浩. 水质约束条件下确定土壤允许流失量的方法[J]. 长江流域资源与环境, 2005, 14(1): 109 -113 .
[7] 李成范,刘岚, 周廷刚,张力, 吴忠芳. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1): 60 .
[8] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[9] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[10] 陈 进,黄 薇. 梯级水库对长江水沙过程影响初探[J]. 长江流域资源与环境, 2005, 14(6): 786 -791 .