长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 902-914.doi: 10.11870/cjlyzyyhj201706013
沈胤胤1,2,3, 胡雷地4,5, 姜泉良1, 江俊武1, 吴亚林1, 黄涛1,2,3, 杨浩1, 宋挺6, 黄昌春1,2,3,4
SHEN Yin-yin1,2,3, HU Lei-di4,5, JIANG Quan-liang1, JIANG Jun-wu1, WU Ya-lin1, HUANG Tao1,2,3, YANG Hao1, SONG Ting6, HUANG Chang-chun1,2,3,4
摘要: 随着工业的迅速发展和农业生产方式的转变,使得太湖富营养化现象日趋严重,对流域内生态环境构成极大的威胁。以研究区6个时期土地利用数据和30a逐日降雨数据为模型的主要输入变量,利用SWAT模型分别对研究区内6个不同时期营养盐输出进行模拟研究,得到研究区内30a时间尺度(1984~2013年)营养盐输出情况。根据模型输出结果探究研究区内营养盐输出与降雨量、径流量以及土地利用变化的关系。以2009~2013年宜兴站径流数据和水质数据作为模型的率定和验证数据,总氮(TN)和总磷(TP)在模型率定期确定系数R2为0.76和0.92,纳什效率系数Ens为0.76和0.79,验证期确定系数R2为0.66和0.95,纳什效率系数Ens为0.6和0.54,模拟结果较好。结果表明:营养盐输出与降雨在时间是呈现较强的相关性,但是在空间上降雨与营养盐输出相关性不明显;土地利用类型与营养盐输出密切相关,耕地和建设用地是研究区主要的营养盐输出源,土地利用类型空间分布与TN、TP空间分布相关系数分别为0.74和0.73。将为太湖流域非点源污染控制和治理提供理论支撑及数据基础。
中图分类号:
[1] 舒凤月, 刘玉配, 赵 颖, 等. 南四湖水体氮、磷营养盐时空分布特征及营养状态评价[J]. 环境科学, 2012, 33(11):3748-3752.[SHU F Y, LIU Y P, ZHAO Y, et al. Spatio-temporal distribution of TN and TP in water and evaluation of eutrophic state of Lake Nansi[J]. Environmental Science, 2012, 33(11):3748-3752.] [2] 王 鹏, 陈多多, 陈 波. 赣江水体氮磷营养盐分布特征与污染来源[J]. 江西师范大学学报(自然科学版), 2015, 39(4):435-440.[WANG P, CHEN D D, CHEN B. The distribution characters and pollution sources of nitrogen and phosphorus nutrients in Ganjiang River[J]. Journal of Jiangxi Normal University (Natural Science), 2015, 39(4):435-440.] [3] 许朋柱, 秦伯强, BEHRENDT H, 等. 太湖西南部河流流域的营养盐排放[J]. 湖泊科学, 2007, 19(5):544-551.[XU P Z, QIN B Q, BEHRENDT H, et al. Estimation of nutrient emissions into the river system of the southwestern Taihu Basin[J]. Journal of Lake Sciences, 2007, 19(5):544-551.] [4] 王 静, 丁树文, 蔡崇法, 等. AnnAGNPS模型在丹江库区黑沟河流域的模拟应用与检验[J]. 土壤通报, 2009, 40(4):907-912.[WANG J, DING S W, CAI C F, et al. Applying and testing AnnAGNPS for pollutant loads of Heigou watershed in Danjiang reservoir[J]. Chinese Journal of Soil Science, 2009, 40(4):907-912.] [5] 李兆富, 杨桂山, 李恒鹏. 西笤溪流域不同土地利用类型营养盐输出系数估算[J]. 水土保持学报, 2007, 21(1):1-4, 34.[LI Z F, YANG G S, LI H P. Estimation of nutrient export coefficient from different land use types in Xitiaoxi watershed[J]. Journal of Soil and Water Conservation, 2007, 21(1):1-4, 34.] [6] ARNOLD J G, SRINIVASAN R, MUTTIAH R S, et al. Large area hydrologic modeling and assessment part I:model development1[J]. Journal of the American Water Resources Association, 1998, 34(1):73-89. [7] KINIRY J R, WILLIAMS J R, SRINIVASAN R. Soil and water assessment tool user's manual[J]. Nature Clinical Practice Rheumatology, 2000, 3(3):119. [8] ARNOLD J G, WILLIAMS J R, NICKS A D, et al. SWRRB:a basin scale simulation model for soil and water resources management[M]. College Station, Texas:Texas A & M University Press, 1990:309. [9] KNISEL W G. CREAMS:A field-scale model for chemicals, runoff, and erosion from agricultural management systems[R]. Washington DC:U.S. Department of Agriculture, 1980. [10] LEONARD R A, KNISEL W G, STILL D A. GLEAMS:Groundwater loading effects of agricultural management systems[J]. Transactions of the ASAE, 1987, 30(5):1403-1418. [11] WILLIAMS J R, JONES C A, DYKE P T. A modeling approach to determining the relationship between erosion and soil productivity[J]. Transactions of the ASAE, 1984, 27(1):129-144. [12] GRIZZETTI B, BOURAOUI F, GRANLUND K, et al. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model[J]. Ecological Modelling, 2003, 169(1):25-38. [13] LEE M, PARK G, PARK M, et al. Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and QuickBird high resolution satellite imagery[J]. Journal of Environmental Sciences, 2010, 22(6):826-833. [14] SANTHI C, SRINIVASAN R, ARNOLD J G, et al. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas[J]. Environmental Modelling & Software, 2006, 21(8):1141-1157. [15] BOURAOUI F, BENABDALLAH S, JRAD A, et al. Application of the SWAT Model on the Medjerda River Basin (Tunisia)[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(8/10):497-507. [16] 陈 媛, 郭秀锐, 程水源, 等. SWAT模型在三峡库区流域非点源污染模拟的适用性研究[J]. 安全与环境学报, 2012, 12(2):146-152.[CHEN Y, GUO X R, CHENG S Y, et al. On the applicability of SWAT model to the nonpoint source pollution in the watershed of the Three-Gorge Reservoir[J]. Journal of Safety and Environment, 2012, 12(2):146-152.] [17] 秦耀民, 胥彦玲, 李怀恩. 基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究[J]. 环境科学学报, 2009, 29(2):440-448.[QIN Y M, XU Y L, LI H E. SWAT model of non-point source pollution under different land use scenarios in the Heihe river basin[J]. Acta Scientiae Circumstantiae, 2009, 29(2):440-448.] [18] 张韶华. 基于GIS与SWAT模型的滇池流域不同坡度下土地利用/覆被变化对农业非点源污染的影响研究[D]. 昆明:云南师范大学硕士学位论文, 2014:1-69.[ZHANG S H. Effects of land use/land cover change on agricultural non-point source pollution in different slope of Dianchi River Basin Based on GIS and SWAT model[D]. Kunming:Master Dissertation of Yunnan Normal University, 2014:1-69.] [19] 李海涛, 田庆久. ASTER数据产品的特性及其计划介绍[J]. 遥感信息, 2004(3):53-55, 47.[LI H T, TIAN Q J. An introduction to ASTER data and ASTER mission[J]. Remote Sensing Information, 2004(3):53-55, 47.] [20] 李 硕, 赖正清, 王 桥, 等. 基于SWAT模型的平原河网区水文过程分布式模拟[J]. 农业工程学报, 2013, 29(6):106-112.[LI S, LAI Z Q, WANG Q, et al. Distributed simulation for hydrological process in Plain River network region using SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6):106-112.] [21] 芮孝芳, 朱庆平. 分布式流域水文模型研究中的几个问题[J]. 水利水电科技进展, 2002, 22(3):56-58.[RUI X F, ZHU Q P. Some problems in research of distributed watershed hydrological model[J]. Advances in Science and Technology of Water Resources, 2002, 22(3):56-58.] [22] POPOV E G. Gidrologicheskie prognozy (hydrological forecasts)[M]. Leningrad:Gidrometeoizdat, 1979. [23] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域径流模拟[C]//2008年湖北省气象学会学术年会学术论文详细文摘汇集. 烟台:湖北省科学技术协会, 2008:59-67.[XIA Z H, ZHOU Y H, XU H M. Runoff simulation of Hanjiang River Basin Based on SWAT model[C]//Meteorological Monthly. Yantai:Hubei Association for Science & Technology, 2008:59-67.] [24] 王 森, 朱昌雄, 耿 兵. 土壤氮磷流失途径的研究进展[J]. 中国农学通报, 2013, 29(33):22-25.[WANG S, ZHU C X, GENG B. Research advancement in loss pathways of nitrogen and phosphorus in soils[J]. Chinese Agricultural Science Bulletin, 2013, 29(33):22-25.] [25] WELLER D E, JORDAN T E, CORRELL D L, et al. Effects of land-use change on nutrient discharges from the Patuxent river watershed[J]. Estuaries, 2003, 26(2A):244-266. [26] 陆安详, 赵云龙, 王纪华, 等. 不同土地利用类型下氮、磷在土壤剖面中的分布特征[J]. 生态学报, 2007, 27(9):3923-3929.[LU A X, ZHAO Y L, WANG J H, et al. Distribution characteristics of nitrogen and phosphorus in agricultural soil profiles under different landuse[J]. Acta Ecologica Sinica, 2007, 27(9):3923-3929.] [27] 郭红丽, 陈家栋, 姜红梅, 等. 南京市土壤氮和磷的分布及其土地利用效应[J]. 安徽农业科学, 2013, 41(3):1061-1064.[GUO H L, CHEN J D, JIANG H M, et al. Soil nitrogen and phosphorus distribution and its land use effect in Nanjing[J]. Journal of Anhui Agricultural Sciences, 2013, 41(3):1061-1064.] [28] 赵 峰, 范海峰, 田竹君, 等. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. 吉林大学学报(地球科学版), 2005, 35(5):661-666.[ZHAO F, FAN H F, TIAN Z J, et al. Analysis of different land use patterns and soil erosion change in the Middle of Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(5):661-666.] |
[1] | 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495. |
[2] | 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901. |
[3] | 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453. |
[4] | 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452. |
[5] | 吴见, 王帅帅, 谭靖. 基于安徽省土地利用变化的地形梯度效应分析[J]. 长江流域资源与环境, 2016, 25(02): 239-248. |
[6] | 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155. |
[7] | 吴洁璇, 陈振杰, 李满春, 姜朋辉, 骈宇哲. 基于邻接关系的土地利用变化空间关联规则研究[J]. 长江流域资源与环境, 2015, 24(09): 1537-1544. |
[8] | 刘超琼, 彭开丽, 陈红蕾. 安徽省土地利用变化下的生态敏感性时空规律[J]. 长江流域资源与环境, 2015, 24(09): 1584-1590. |
[9] | 何建华, 王宵君, 杜超, 李纯, 施璇. 武汉城市圈土地利用变化系统仿真模拟与驱动力分析[J]. 长江流域资源与环境, 2015, 24(08): 1270-1278. |
[10] | 李正阳, 袁旭音, 王欢, 许海燕, 陈海龙, 鲁朝朋. 西苕溪干流水体、悬浮物和表层沉积物中营养盐分布特征与水质评价[J]. 长江流域资源与环境, 2015, 24(07): 1150-1156. |
[11] | 王军, 顿耀龙. 土地利用变化对生态系统服务的影响研究综述[J]. 长江流域资源与环境, 2015, 24(05): 798-808. |
[12] | 张利平, 陈小凤, 张晓琳, 宋星原. VIC模型与SWAT模型在中小流域径流模拟中的对比研究[J]. 长江流域资源与环境, 2009, 18(8): 745-. |
[13] | 宋玉芝,秦伯强, 高光. 附着生物对富营养化水体氮磷的去除效果[J]. 长江流域资源与环境, 2009, 18(2): 180-. |
[14] | 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33-. |
[15] | 涂小松,濮励杰,吴 骏,朱 明. 基于SLEUTH模型的无锡市区土地利用变化情景模拟[J]. 长江流域资源与环境, 2008, 17(6): 860-860. |
|