长江流域资源与环境 >> 2017, Vol. 26 >> Issue (12): 2040-.doi: 10.11870/cjlyzyyhj201712012

• 长江经济带建设及生态安全 • 上一篇    下一篇

武汉市城市化过程中资源环境压力测度与分析

郝汉舟1,2,郑  威3,4,钟学斌1,2,汤  民1,陈薇伊1   

  1. (1. 湖北科技学院资源环境科学与工程学院,湖北 咸宁 437100;2. 湖北科技学院长江中游水土资源研究中心,湖北 咸宁 437100;3. 湖北省农业科学院农业经济技术研究所, 湖北 武汉 430064;4. 主要粮食作物产业化湖北省协同创新中心,湖北 荆州 434025)
  • 出版日期:2017-12-20

ANALYSIS ON RESOURCES AND ENVIRONMENT PRESSURE IN THE WUHAN URBANIZATION PROCESS#br#

#br# HAO Han-zhou1,2, ZHENG Wei3,4,ZHONG Xue-bin1,2, TANG Min1, CHEN Wei-yi1   

  1. (1.Resources and Environment College, Hubei University of Science and Technology, Xianning 437100, China; 2. Land and Water Resources Research Center of the Middle Yangtze River, Xianning 437100, China; Xiannina Environmental Protection Monitoring Station, Xianning 437100, China;3 Institute of Agricultural Economic and Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; 4 Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, China)
  • Online:2017-12-20

摘要: 快速城市化对生态环境和资源的剥夺及资源环境对城市化的约束是国内外近年来研究的热点问题。测度城市化过程中对资源环境压力及判别两者间的动态耦合类型对指导健康城市化具有积极意义。首先构建了包含16个子指标的城市化综合指标体系和9个子指标的资源环境压力综合指标体系。采用突变级数法模型计算了城市化综合指数;用熵权法计算了资源环境压力指数。采用灰色系统方法计算了城市化综合指标体系和资源环境压力综合指标体系的关联度。采用一般系统理论,建立了城市化与资源环境耦合模型,对2004~2013 年武汉市城市化与生态环境的耦合度及类型进行分析判别。结果表明:(1)武汉市的城市化综合指数逐年增高,尤其是2005~2007年城市化水平的增速较快。资源环境压力综合指数最大值出现在2006年为0.629,最小值出现在2013年为0.452;(2)关联度值在0.480~0.911之间,耦合度大部分都在中等和较强这两个范围中。烟尘排放量与工业总产值、建成区面积、人均用电量、人均GDP和城镇人口规模均表现极强的耦合性(大于0.85)。各城市化子指标中,城镇人口比重与资源环境的关联度最大;在资源环境子指标中,烟尘排放量与城市化水平的耦合作用最强;(3)基于一般系统论 (General System Theory)的动态耦合模型反映了城市化-资源环境复合系统的动态反馈过程。从2004~2013年,武汉市经历了协调-冲突-协调-冲突4个阶段。结果显示,武汉市城市化-资源环境复合系统随着城市化的推进,城市化与资源环境的矛盾进一步显现。

Abstract: The deprivation of ecological environment and resources by rapid urbanization and the restriction of resources and environment on urbanization are hot issues in recent years. It is of great significance to measure the degree of coordination between urbanization and resource environment and to determine the type of coupling and coordination to guide healthy urbanization. This paper first constructs the comprehensive index system of urbanization and the sub-index of resource and environment pressure, which includes 16 sub-indicators. The abrupt progression method was used to calculate the urbanization comprehensive index. The entropy weight method was used to calculate the pressure index of resources and environment. The gray system method was used to calculate the correlation between the comprehensive index system of urbanization and the comprehensive index system of resources and environment pressure. According to the general system theory, the dynamic coupling model of urbanization and resources and environment is constructed, and the coupling degree and the type discrimination of urbanization and ecological environment in Wuhan from 2004 to 2013 are quantitatively analyzed. The results show: (1) the comprehensive index of urbanization in Wuhan increased year by year, especially in 2005-2007, the urbanization level increased rapidly. The maximum value of comprehensive index of resources and environment pressure appeared in 2006 was 0.629, the minimum value appeared in 2013 was 0.452. (2) The correlation value between the 0.480-0.911, most of the coupling degrees in the medium and strong in the two range. Soot emissions and industrial output value, built area, per capita electricity consumption, per capita GDP, urban population scale performance of the strong coupling (greater than 0.85). Among the urbanized sub-indicators, the proportion of urban population and resources and environment are the most relevant. In the resource and environment sub-indicators, soot emissions and urbanization level of the coupling effect is the strongest. (3) The dynamic coupling model based on general system theory reflects the dynamic feedback process of urbanization-resource environment composite system. From 2004 to 2013, Wuhan has experienced four stages of coordination-conflict-coordination-conflict. The results show that the urbanization of Wuhan City-resources and environment complex system with the advance of urbanization, urbanization and resource environment, the contradiction is further apparent.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .
[2] 王宜虎. 江苏沿江各市工业绿色化程度的模糊评价[J]. 长江流域资源与环境, 2008, 17(2): 170 .
[3] 胡学玉, 孙宏发, 陈德林. 铜绿山矿冶废弃地优势植物重金属的积累与迁移[J]. 长江流域资源与环境, 2008, 17(3): 436 .
[4] 宋述军,周万村. 岷江流域土地利用结构对地表水水质的影响[J]. 长江流域资源与环境, 2008, 17(5): 712 .
[5] 吴 威,曹有挥,曹卫东,徐 建,王 玥,. 区域高速公路网络构建对可达性空间格局的影响——以安徽沿江地区为实证 [J]. 长江流域资源与环境, 2007, 16(6): 726 .
[6] 胥勤勉,杨达源,董 杰,周 彬. 滇池水环境治理的“调水”“活水”工程[J]. 长江流域资源与环境, 2006, 15(1): 116 -119 .
[7] 倪绍祥. 长三角地区经济一体化与土地资源管理[J]. 长江流域资源与环境, 2004, 13(6): 536 -540 .
[8] 黄朝禧,赵绪福,韩桐魁. 富水水库消落区土地开发试验及其效果[J]. 长江流域资源与环境, 2005, 14(4): 435 -439 .
[9] 王学雷,蔡述明,任宪友,陈世俭. 三峡库区湿地生态建设与保护利用[J]. 长江流域资源与环境, 2004, 13(2): 149 -153 .
[10] 刘 伟. 长江经济带区域经济差异分析[J]. 长江流域资源与环境, 2006, 15(2): 131 -135 .