长江流域资源与环境 >> 2018, Vol. 27 >> Issue (11): 2425-2433.doi: 10.11870/cjlyzyyhj201811004

• 区域可持续发展 • 上一篇    下一篇

基于地理探测器的土地开发度时空差异及其驱动因素

赵小风1,李娅娅1,赵雲泰2*,田志强2   

  1. (1. 河海大学公共管理学院土地资源管理系,江苏 南京 211100;2. 中国土地勘测规划院,北京 100035
  • 出版日期:2018-11-20 发布日期:2018-12-13

Spatiotemporal Differences and Driving Factors of Land Development Degree in  China Based on Geographical Detector

ZHAO Xiao-feng1, LI Ya-ya1, ZHAO Yun-tai2, TIAN Zhi-qiang2   

  1. (1.School of Public Administration, Hohai University, Nanjing 211100, China;
    2. Land Surveying and Planning Institute, Beijing 100029, China
  • Online:2018-11-20 Published:2018-12-13

摘要: 土地开发度(LDD)是衡量区域人类活动对土地开发利用的程度。分析土地开发度的时空差异和驱动机制能更加深刻的认识人类活动与区域土地利用之间的关系,为研制区域差别化的土地管控政策提供依据。通过分析全国345个城市2009~2015年土地开发度的时空差异,并采用地理探测器探测其驱动因素及其空间差异。研究表明:(1)全国土地开发度从2009年的4.1%持续增加到2015年的4.47%,并在东、中、西3个区域上表现出显著的空间差异;(2)345个城市的土地开发度总体呈上升趋势,且呈现明显的空间差异。土地开发度高的城市主要在城市群集聚,并在长江经济带、丝绸之路经济带等区域表现较快增长。(3)全国土地开发度由投资驱动和人口驱动为主转变为产业驱动和人口驱动为主,东、中、西3个区域土地开发度的主导驱动因素有所差异。

Abstract: Land development degree (LDD) has been a useful approach for measuring the extent to which human activities have influenced the land development. The analysis of spatiotemporal differences and driving factors of land development degree contribute to a deeper understanding on the relationship between human activities and regional land utilization, which provides mechanistic information for formulating different regulation policy for regional land use. The study analyzed the spatial pattern of land development in 345 cities and discovered the driving factors of LDD by using geographical detector. The results showed that China’s LDD has increased from 4.1% to 4.47% between 2009 and 2015. The LDD of 345 cities have increased generally and presented significant spatiotemporal differences among the three economic regions. Cities with high LDD were concentrated mainly in megalopolis, which grew faster in Yangtze river delta and the Silk Road Economic Belt. The main driving factors for LDD have changed from investment and population to industry and population at the national scale. The influence of these factors also varies in different regions. In eastern region, population and industry have driven the LDD instead of investment and industry; population was the main driver of LDD in central region; while the investment played an increasingly important role in western region.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王舒曼,谭 荣,吴丽梅. 农地资源舒适性价值评估——以江苏省为例[J]. 长江流域资源与环境, 2005, 14(6): 720 -724 .
[2] 毕东苏, 郑广宏, 顾国维, 郭小品. 城市生态系统承载理论探索与实证——以长江三角洲为例[J]. 长江流域资源与环境, 2005, 14(4): 465 -469 .
[3] 张 虹. 三峡重庆库区消落区基本特征与生态功能分析[J]. 长江流域资源与环境, 2008, 17(3): 374 .
[4] 康丽娟,潘晓洁,常锋毅,李敦海,沈银武,刘永定. HCO-3碱度对铜绿微囊藻生长与光合活性的影响[J]. 长江流域资源与环境, 2008, 17(5): 775 .
[5] 庄建琦, 崔鹏. 基于BP神经网络泥石流沟发育阶段的判定[J]. 长江流域资源与环境, 2009, 18(9): 849 .
[6] 李相虎| 张 奇| 邵敏. 鄱阳湖流域叶面积指数时空变化特征及其与气候因子的关系[J]. 长江流域资源与环境, 2012, 21(03): 296 .
[7] 黄治勇 |牛 奔 |叶丽梅 |姚望玲 |王佑兵. 长江三峡库区极端大雾天气的气候变化特征[J]. 长江流域资源与环境, 2012, 21(05): 646 .
[8] 房国良 |高 原 |徐连军|胡 龙 |张善发. 上海市降雨变化与灾害性降雨特征分析[J]. 长江流域资源与环境, 2012, 21(10): 1270 .
[9] 周 驰|李阳|曹秀云|周易勇|宋春雷. 风干和淹水过程对巢湖流域土壤和沉积物磷吸附行为的影响[J]. 长江流域资源与环境, 2012, 21(Z2): 10 .
[10] 马仁锋. 中国长江三角洲城市群创意产业发展趋势及效应分析[J]. 长江流域资源与环境, 2014, 23(01): 1 .