长江流域资源与环境 >> 2019, Vol. 28 >> Issue (03): 691-699.doi: 10.11870/cjlyzyyhj201903020

• 生态环境 • 上一篇    下一篇

三峡库区草堂河流域土壤pH空间分布预测制图

马冉1,3,刘洪斌1,3* ,武伟2,3   

  1. (1.西南大学资源环境学院, 重庆 400716;2. 西南大学计算机与信息科学学院, 重庆 400716;
    3. 重庆市数字农业重点实验室, 重庆 400716)
  • 出版日期:2019-03-20 发布日期:2019-03-22

Spatial Distribution Prediction and Mapping of Soil pH of Caotang River Basin in the Three Gorges Reservoir Area

MA Ran 1,3, LIU Hong-bin 1,3, WU Wei 2,3   

  1. (1. College of Resources and Environment, Southwest University, Chongqing 400716, China;
    2. College of Computer and Information Science, Southwest University, Chongqing 400716, China;
    3. Chongqing Key Laboratory of Digital Agriculture, Chongqing 400716, China)
  • Online:2019-03-20 Published:2019-03-22

摘要:  以三峡库区草堂河流域为研究区,利用网格布点,共采集102个土壤样点,分析测定土壤的pH值,结合成土母质和地形等10个环境因子,以样点总数的85%作为训练集进行预测模型构建,15%作为验证集检验模型精度,利用随机森林(Random Forest, RF)模型对研究区土壤pH进行空间分布预测并制图。结果表明:土壤pH与谷深、坡长呈显著正相关,与海拔、距河网垂直距离、坡高呈显著负相关。三叠系大冶组灰岩发育的土壤pH值高于三叠系须家河组石英砂岩发育的土壤pH值。基于环境因子的RF预测模型,平均绝对误差(MAE)为0.47、均方根误差(RMSE)为0.59、决定系数(R2)为0.85,能解释研究区土壤pH值85%的空间变异。对土壤pH值产生主要影响的环境因子为成土母质和海拔。可见,基于环境因子的RF预测模型,预测精度高,可以作为土壤pH空间分布预测的有效方法,能为流域尺度下其他土壤属性的空间分布预测提供依据和借鉴。

Abstract: A total of 102 samples were collected from the topsoil at a depth of 20 cm to predict and map the spatial distribution of soil pH over the Caotang River Basin in the Three Gorges Reservoir Area. The samples were divided into calibration (85%) and validation (15%) sets. Random Forest (RF) method was applied to predict the spatial distribution of soil pH based on parent materials and terrain indicators (Elevation, Slope, Aspect, Slope Height, Valley depth, Topographical wetness index, Vertical Distance to Channel Network, Multi-resolution index of valley bottom flatness, Slope Length). The major influencing environmental factors on soil pH spatial variability were investigated by the RF model. The results showed that soil pH was significantly positively correlated to Valley depth and Slope Length, while significantly negatively correlated to Elevation, Vertical Distance to Channel Network and Slope Height. Soils developed from Limestone of Triassic Daye formation had higher values of pH than that developed from Sandstone of Triassic Xujiahe Formation. The RF model had a good performance with the mean absolute error (MAE), the root mean square error (RMSE) and the determination coefficient (R2) of 0.47, 0.59 and 0.85, respectively. The model could explain 85% variation of soil pH in the study area. The major factors to soil pH variations were soil parent material and elevation. Therefore, RF model can serve as an effective method to predict the spatial distribution of soil pH, and can provide the basis and reference for other soil properties prediction at watershed scale.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈秀铜, 李璐. 基于AHP-FUZZY方法的锦屏一级水库生态系统服务功能综合评价[J]. 长江流域资源与环境, 2011, 20(1): 107 .
[2] 吴开亚| 郭旭| 王文秀| 张浩. 上海市居民消费碳排放的实证分析[J]. 长江流域资源与环境, 2013, 22(5): 535 .
[3] 刘元波|赵晓松|吴桂平. 近十年鄱阳湖区极端干旱事件频发现象成因初析[J]. 长江流域资源与环境, 2014, 23(01): 131 .
[4] 王 冉|王玉杰|王云琦|刘春霞|郭 平. 三峡库区典型常绿阔叶林冠层降雨截留模拟研究[J]. 长江流域资源与环境, 2014, 23(02): 281 .
[5] 赵小汎. 土地利用生态服务价值指标体系评估结果比较研究[J]. 长江流域资源与环境, 2016, 25(01): 98 -105 .
[6] 尚程鹏,章新平,张新主,姚天次,王婷. 洞庭湖流域近54 a来冬季降水及其异常环流特征分析[J]. 长江流域资源与环境, 2017, 26(8): 1273 .
[7] 武旭同1,2,王腊春2*,李 娜3. 近60 a来长江干流输沙量变化及原因分析[J]. 长江流域资源与环境, 2018, 27(01): 71 .
[8] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[9] 曾忠平, 邹尚君, 彭浩轩. 基于重力空间熵的城市湿地压力模型构建研究——以武汉南湖湿地为例[J]. 长江流域资源与环境, 2018, 27(08): 1745 .
[10] 葛芳, 田波, 周云轩, 何青, 钱伟伟. 海岸带典型盐沼植被消浪功能观测研究[J]. 长江流域资源与环境, 2018, 27(08): 1784 .