长江流域资源与环境 >> 2019, Vol. 28 >> Issue (12): 3014-3028.doi: 10.11870/cjlyzyyhj201912021

• 生态环境 • 上一篇    下一篇

2000~2015年川西高原植被EVI海拔梯度变化及其对气候变化的响应

荣欣1,易桂花2,3*,张廷斌1,4,李景吉5,6,别小娟1,覃艺1,夏杰1   

  1. (1. 成都理工大学地球科学学院,四川 成都 610059;2. 成都理工大学管理科学学院,四川 成都 610059;3. 蒙大拿大学蒙大拿科技分校,蒙大拿州,美国,59701;4. 成都理工大学工程技术学院,四川 乐山 614000;5. 成都理工大学环境学院,四川 成都 610059;6. 国家环境保护水土污染协同控制与联合修复重点实验室(成都理工大学),四川 成都 610059)

  • 出版日期:2019-12-20 发布日期:2019-12-10

Change of Vegetation EVI with Altitude Gradient and Its Response to Climate Change in the Western Sichuan Plateau from 2000 to 2015

RONG Xin1,YI Gui-hua 2,3,ZHANG Ting-bin 1,4,LI Jing-ji 5,6,BIE Xiao-juan1,QIN Yi1,XIA Jie1   

  1. (1. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China;2. College of Management 
    Science, Chengdu University of Technology, Chengdu 610059, China;3. Montana Tech of the University of Montana, 
    Montana 59801, USA ;4. The Engineering & Technical College of Chengdu University of Technology, Leshan 614000, China;5. College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China;
    6. State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & 
    Water Pollution (Chengdu University of Technology), Chengdu 610059, China)

  • Online:2019-12-20 Published:2019-12-10

摘要: 川西高原植被系统受地形因子影响在垂直方向上空间特征差异明显。以MODIS EVI遥感数据作为植被动态监测指数,结合高程数据分析2000~2015年川西高原植被EVI沿海拔梯度的变化规律,然后根据川西高原内部及附近39个气象站点的气温和降水资料开展川西高原植被EVI变化对气候变化的响应研究。结果表明:(1)川西高原近16年生长季植被EVI以0.8%/10 a的速率波动增加,沿海拔梯度具有先升高后降低的特点,垂直分布特征差异显著;(2)川西高原植被EVI变化趋势整体处于稳定状态,改善面积多于退化面积。在<1 000 m的低海拔区域,由于人类活动的干扰,植被退化严重;中等海拔范围内水热条件充足,利于植被生长,植被逐渐得到改善,局部地区有轻微退化现象;在>4 000 m的高海拔地带,植被EVI波动幅度较低并趋于稳定;(3)不同高程区间内植被EVI变化受气候影响不同,川西高原高海拔地区植被生长主要受气温控制,而中等海拔地区受降水影响较大。(4)在0.05显著性水平下,川西高原植被EVI变化受非气候因子驱动的面积分布较广,约84.22%;受气候因子驱动的面积占比为15.78%,气温对植被生长和分布的驱动作用强于降水驱动作用。


Abstract: Under the influence of topographical factors, the spatial characteristics of the vegetation system in the western Sichuan plateau are obviously different in the vertical direction. Taking MODIS EVI remote sensing data as the vegetation dynamic monitoring index, the variation law of EVI along the elevation gradient in the western Sichuan Plateau from 2000 to 2015 was analyzed. Then based on the air temperature and precipitation data from 39 meteorological stations in and near the western Sichuan Plateau, the response of vegetation EVI to climate change was studied. The results showed that: (1) In the recent 16 years, the vegetation EVI showed a fluctuated increasing trend with a rate of 0.8%/10 a and increased along the altitude gradient at first and then decreased. The vertical distribution was significantly different. (2) The change trend of vegetation EVI in the western Sichuan Plateau is in a stable state as a whole, and the improvement area is more than the degenerated area. In the low altitude area (<1 000 m), the vegetation EVI degenerated seriously due to the disturbance of human activities. In the middle altitude, the hydrothermal conditions are sufficient, which is conducive to vegetation growth, and the vegetation is gradually improved, but some local area is slightly degraded. In the high altitude area (>4 000 m), the fluctuation of vegetation EVI is relatively low, and the EVI tends to be stable. (3)Vegetation EVI changes in different altitudes are affected by climate in different ways. The growth of vegetation in the high-altitude area of the western Sichuan Plateau is mainly controlled by temperature, while that in the medium-altitude area is greatly affected by precipitation. (4) At the significance level of 0.05, the vegetation EVI change in the western Sichuan Plateau is driven by non-climatic factors with a wide area distribution of about 84.22%, while the proportion of area driven by climate factors is 15.78%. And the driving force of air temperature on vegetation growth and distribution is stronger than precipitation.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[2] 张 锐| 刘友兆. 我国耕地生态安全评价及障碍因子诊断[J]. 长江流域资源与环境, 2013, 22(07): 945 .
[3] 项小燕, 吴甘霖, 段仁燕, 王志高, 张中信, 王广艳, 张小平. 大别山五针松种群结构及动态研究[J]. 长江流域资源与环境, 2016, 25(01): 55 -62 .
[4] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[5] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[6] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[7] 杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(08): 1836 .
[8] 李恩康, 陆玉麒, 王 毅, 黄群芳, 郭 政. 城镇化对制度转型的影响——基于江苏13个市的脉冲响应函数分析[J]. 长江流域资源与环境, 2018, 27(09): 1919 -1927 .
[9] 啜明英, 马骏, 刘德富, 杨正健. 整流幕对香溪河库湾水温特性影响数值模拟[J]. 长江流域资源与环境, 2018, 27(09): 2101 -2113 .
[10] 朱寅健. (新)环鄱阳湖区域交通网络通达性与旅游一体化发展[J]. 长江流域资源与环境, 0, (): 0 .