长江流域资源与环境 >> 2020, Vol. 29 >> Issue (12): 2719-2726.doi: 10.11870/cjlyzyyhj202012015

• 生态环境 • 上一篇    下一篇

长江中下游流域降水分区及其气象干旱时间变化特征

李明1,2,赵茹昕1,王贵文1,柴旭荣1   

  1. (1. 山西师范大学地理科学学院,山西 临汾 041000; 2. 山西师范大学现代文理学院,山西 临汾 041000)
  • 出版日期:2020-12-20 发布日期:2021-01-14

Precipitation Regionalization in the Middle and Lower Reaches of the Yangtze River and Temporal Evolution of Meteorological Drought in Each Sub-region

LI Ming 1,2, ZHAO Ru-xin 1, WANG Gui-wen 1, CHAI Xu-rong 1   

  1. (1. School of Geographical Sciences, Shanxi Normal University, Linfen 041000, China; 2. Modern College of Arts and Sciences, Shanxi Normal University, Linfen 041000, China)
  • Online:2020-12-20 Published:2021-01-14

摘要:

基于1961~2015年逐月降水格点数据,首先通过系统聚类法对长江中下游流域进行降水分区,然后以标准化降水指数为指标,结合小波分析方法,探讨了长江中下游流域各亚区气象干旱的时间演变规律及周期变化特征。结果表明:(1)空间上,可将长江中下游流域分为6个降水亚区,即:大巴山地农业区(Ⅰ)、湘鄂贵渝山地农业区(Ⅱ)、鄂中东平原农业区(Ⅲ)、湘赣平原丘陵农业区(Ⅳ)、鄱阳湖平原农业区(Ⅴ)和长江三角洲平原农业区(Ⅵ)。(2)不同降水亚区干湿事件交替过程存在差异,Ⅵ区与其它亚区差异较大,Ⅱ区、Ⅳ区和Ⅴ区的干湿事件具有相似的时间演变模式;除Ⅵ区外,2000年后其它降水亚区干旱发生频率增加明显。(3)不同降水亚区气象干旱的第一主周期存在差异,北部(Ⅰ区、Ⅲ区、Ⅵ区)和南部(Ⅱ区、Ⅳ区、Ⅴ区)具有明显的区域分化特征,但各气候亚区大都显示出3.5年左右的显著周期。研究结果可为长江中下游流域各亚区气象干旱驱动因素的解释、干旱监测计划的制定、水资源的管理和旱灾的防治提供参考依据。

Abstract: Based on the gridded dataset of monthly precipitation from 1961 to 2015, precipitation regionalization is firstly carried out by spatial hierarchical cluster method in the middle and lower reaches of the Yangtze River (MLYR). Then, standardized precipitation index is employed to explore the temporal evolution of drought events, and wavelet method is used to detect the drought periodicity in each sub-region of MLYR. The results show that: (1) Spatially, MLYR can be divided into six sub-regions, namely, Daba Mountain (Region I), Intersection of Hunan-Hubei-Guizhou-Chongqing (Region II), Central and eastern plain of Hubei province (Region III), Hilly plain area of Hunan-Jiangxi (Region IV), Poyang Lake Plain (Region V), Yangtze River Delta Plain (Region VI). (2) There are obvious differences in the alternating processes of dry and wet events in different sub-regions. The dry and wet evolution in Region VI differs greatly from other sub-regions. The wet and dry events in Region II, Region IV and Region V have similar temporal evolution patterns. Except for the Region VI, the frequencies of drought in other sub-regions have increased significantly after 2000. (3) There are differences in the first main cycles of meteorological drought in different sub-regions. Drought periods of the northern (Region I, Region III and Region VI) and southern (Region II, Region IV and Region V) regions have obvious regional differentiation characteristics, but a significant cycle of about 3.5 years exists in the most of the sub-regions. The results of this paper can provide reference for the interpretation of meteorological drought driving factors, the formulation of drought monitoring plan, the management of water resources and the prevention and control of drought in the sub-regions of MLYR.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 晨, 刘 敏. 再分析资料在三峡库区气候效应研究中的应用[J]. 长江流域资源与环境, 2018, 27(09): 1998 -2013 .
[2] 邓鹏鑫, 邴建平, 贾建伟, 王栋. 汉江流域1956~2016年汛期降水时空演变格局[J]. 长江流域资源与环境, 2018, 27(09): 2132 -2141 .
[3] 赵玉岩, 栾维新, 王 辉, 马 瑜.  

城市核心建成区对邻近新增建设用地影响研究——以长江三角洲为例 [J]. 长江流域资源与环境, 2018, 27(10): 2172 -2181 .

[4] 黄杰龙, 陈秋华, 幸绣程, 王立群.  

中国省域森林公园旅游产业竞争力的时空演化特征及影响因素 [J]. 长江流域资源与环境, 2018, 27(10): 2305 -2315 .

[5] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505 -2517 .
[6] 周彦锋, 吕大伟, 葛 优, 王晨赫, 刘剑羽, 张 丽, 尤 洋, . 淀山湖河蚬翘嘴红鲌国家级水产种质资源保护区翘嘴鲌产卵场现状[J]. 长江流域资源与环境, 2018, 27(12): 2733 -2739 .
[7] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[8] 刘晓阳 黄晓东 丁志伟. 长江经济带县域信息化水平的空间差异研究[J]. 长江流域资源与环境, 0, (): 0 .
[9] 奚世军, 安裕伦, 李阳兵, 蔡沛伶, 龙立美, 陈啟英, . 基于景观格局的喀斯特山区流域生态风险评估 ——以贵州省乌江流域为例 [J]. 长江流域资源与环境, 2019, 28(03): 712 -721 .
[10] 封瑞雪, 刘军旗, 姚梦辉, 陈根深, 赵剑雄. 三峡水库蓄水前后重庆气候变化分析[J]. 长江流域资源与环境, 2019, 28(04): 994 -1002 .