长江流域资源与环境 >> 2020, Vol. 29 >> Issue (4): 836-849.doi: 10.11870/cjlyzyyhj202004005

• 区域可持续发展 • 上一篇    下一篇

基于百度指数的湖南旅游目的地城市旅游者网络关注度及其空间格局研究

陆利军1,2,3,戴湘毅4   

  1. (1.中南林业科技大学,湖南 长沙 410004;2.湖南工学,湖南 衡阳 421008;3.“聚落文化遗产数字化技术与应用”湖南省重点实验室,湖南 衡阳 421001;4.首都师范大学,北京 100048)
  • 出版日期:2020-04-20 发布日期:2020-06-12

Research on the Tourist Network Attention and Spatial Pattern of Tourist Destination Cities in Hunan Based on the Baidu Index

LU Li-jun1,2,3 , DAI Xiang-yi4   

  1. (1.Central South University of Forestry & Technology, Changsha 410004, China;2. Hunan Institute of Technology, Hengyang 421008, China;3. Digital Technology and Application of Clan Cultural Heritage, Hengyang 421008, China;4. College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China)
  • Online:2020-04-20 Published:2020-06-12

摘要: 摘  要: 网络关注度从赛博空间层面反映了旅游者对旅游目的地的整体感知。通过社会网络分析方法,以综合运用“直接取词法”和“范围取词法”选定的与湖南旅游目的地城市旅游活动密切相关的共计103个关键词的百度指数构建而成的网络关注度指数为分析数据,对湖南旅游目的地城市的网络关注度及其空间格局进行了系统分析。研究发现:(1)旅游者对湖南各旅游目的地城市的网络关注程度有所差别,但是上述旅游目的地城市的网络关注度在年度周期内呈现出同步波动态势,具有较强的“共现性”;(2)旅游者对湖南各旅游目的地城市的网络关注度构成了相对完整的关联结构,但是岳阳与其他旅游目的地城市之间网络信息互动较弱,娄底和益阳与其他旅游目的地城市之间基本没有网络信息互动;(3)旅游者对湖南各旅游目的地城市的网络关注度的网络影响力呈现出明显的等级结构,其中,长沙、郴州和株洲具有显著的“结构洞”优势,对湖南各旅游目的地城市之间的信息流动起到的“桥接”作用明显;(4)旅游者对湖南各旅游目的地城市的网络关注度的空间关联网络可以划分4个板块:其中湘西州位于“经纪人”板块;衡阳等4个节点位于“献媚”位置;长沙等6个节点位于“首属人”位置;娄底、岳阳和益阳则位于“孤立”位置;(5)旅游者对湖南各旅游目的地城市的网络关注度在很大程度上反映了湖南各旅游目的地城市的资源禀赋和旅游产业发展状况,但两者之间并不完全匹配。湖南各旅游目的地城市的资源禀赋和旅游产业是旅游者对湖南各旅游目的地城市产生网络关注度的基础,而网络关注度则主要通过促进或阻碍地理空间因素的方式对湖南旅游目的地城市网络关注度及其空间格局产生影响。鉴于上述研究发现,论文提出,要促进湖南省的旅游产业发展,各旅游目的地城市除了需要强化自身的优质资源建设,凸显各自的旅游发展特质之外,还需要扩大各旅游目的地城市之间的旅游信息交流和合作,尤其需要促进湖南各旅游目的地城市与其他区域之间的旅游者、旅游信息等要素的自由流动,逐步形成多中心、多网络协同发展的旅游空间格局。

Abstract: Abstract:Network attention reflects tourists’ overall perception of tourist destinations from the perspective of cyberspace.In this paper, we systematically analyzed the network attention and spatial pattern of Hunan tourist destination cities through the social network analysis method,using the network attention index constructed by Baidu search data of 103 keywords that are obtained by synthetically using “direct lexicon” and “’range lexicon” method. and closely related to tourist activities as analytical data.This study found that: (1)Tourists have different levels of network attention to tourist destination cities in Hunan, but the network attention of the above-mentioned tourism destination cities shows a synchronous fluctuation trend within the annual cycle which presents a strong “Collinearity”; (2)Tourists’ network attention to the tourist destination cities in Hunan constitute a relatively complete network relationship.However, the network information interaction between Yueyang and other tourist destination cities in the province is weak and there is basically no network information interaction between Loudi and Yiyang and other tourist destination cities in the province; (3)The network influence of tourists’ network attention to the tourist destination cities in Hunan shows an obvious hierarchical structure. Among them, Changsha, Chenzhou and Zhuzhou have significant advantages of “structural hole”, which in general plays an important bridging role to promote the information flow among the tourist destination cities in Hunan; (4)The spatial correlation network of tourists’ network attention to the tourism destinations in Hunan can be divided into four sections:Xiangxi is located in the “Agen” section;Four nodes, such as Hengyang, are located in the “Net overflow” position.;Six nodes including Changsha are located in the “Bidirectional overflow” position;Loudi, Yueyang and Yiyang are located in the “isolated” position; (5) It is particularly noteworthy that although tourists’ online attention to Hunan’s tourist destination cities largely reflects the resource endowment and tourism industry development of Hunan’s tourist destination cities, the two are not completely matched.Although the spatial correlation structure of tourists’ network attention to the cities in Hunan’s tourism destinations is rooted in the physical geographic space, it is quite different from the structure of physical geographic space.In view of the above findings, for the development of the tourism industry in Hunan,this paper propose that the tourist destination cities need not only to strengthen their own construction of high-quality resources and highlight their own characteristics of tourism development,but also expand the exchange and cooperation of tourism information among them.In particular, it is necessary to promote the free flow of tourist,tourism information and other elements in Hunan and gradually form a multi-center multi-network coordinated development of tourism space pattern.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王开然 | 贾亚男 | 胡大超. 基于15N同位素技术的地下河硝酸盐污染来源对比——以重庆青木关地下河为例[J]. 长江流域资源与环境, 2013, 22(06): 750 .
[2] 李 雷 | 危起伟 | 吴金明 | 杜 浩 | 谢 晓. 长江宜宾江段渔业资源现状调查[J]. 长江流域资源与环境, 2013, 22(011): 1449 .
[3] 操信春, 束锐, 郭相平, 邵光成, 王振昌. 基于BWSI与GWSI的江苏省农业生产水资源压力评价[J]. 长江流域资源与环境, 2017, 26(06): 856 -864 .
[4] 吴殿鸣, 邵大伟. 基于最佳尺度的城市扩张特征研究——以苏州中心城区为例[J]. 长江流域资源与环境, 2018, 27(09): 1937 -1946 .
[5] 沈雪, 张露, 张俊飚, 骆兰翎. 稻农低碳生产行为影响因素与引导策略——基于人际行为改进理论的多组比较分析[J]. 长江流域资源与环境, 2018, 27(09): 2042 -2052 .
[6] 马坤, 唐晓岚, 刘思源, 王奕文, 任宇杰, 刘小涵. 长江流域国家级保护地空间分布特征及其国家公园廊道空间策略研究[J]. 长江流域资源与环境, 2018, 27(09): 2053 -2069 .
[7] 曾 刚, 杨舒婷, 王丰龙, . 长江经济带城市协同发展能力研究[J]. 长江流域资源与环境, 2018, 27(12): 2641 -2650 .
[8] 梁志会, 张露, 张俊飚, Jorge Ruiz Menjivar, 刘勇. 小农发展气候智慧型农业的效率与成本改进:倡导农地流转还是发展社会服务?[J]. 长江流域资源与环境, 2019, 28(05): 1164 -1175 .
[9] 李景保, 于丹丹, 张瑞, 杨波, 代稳, 何蒙, 徐志. 近61年来长江荆南三口水系连通性演变特征[J]. 长江流域资源与环境, 2019, 28(05): 1214 -1224 .
[10] 罗燊, 余斌, 张向敏. 乡村生活空间网络结构特征与优化——以江汉平原典型乡建片区为例[J]. 长江流域资源与环境, 2019, 28(07): 1725 -1735 .