长江流域资源与环境 >> 2020, Vol. 29 >> Issue (5): 1174-1182.doi: 10.11870/cjlyzyyhj202005012

• 生态环境 • 上一篇    下一篇

基于遥感的长江中下游城市群高温热浪风险评估

付含聪1,邓帆1* ,杨欢1 ,许诺1,张佳华2*   

  1. (1.长江大学地球科学学院,湖北 武汉 430100; 2.中国科学院大学地球与行星科学学院,北京 100049)
  • 出版日期:2020-05-20 发布日期:2020-07-13

Assessing Heat Wave Risk of Urban Agglomeration in the Middle-Lower Yangtze River Based on Remote Sensing

FU Han-cong 1, DENG Fan 1, YANG Huan 1, XU Nuo 1, ZHANG Jia-hua 2   

  1. (1.School of Geosciences, Yangtze University, Wuhan 430100, China; 2.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
  • Online:2020-05-20 Published:2020-07-13

摘要: 摘要: 由全球气候变暖以及快速城市化引发的极端高温热浪事件频发现象已经影响到人类的生产和生活。利用多源卫星遥感数据和社会经济统计资料,构建基于“高温危险性-社会经济脆弱性-风险适应性”的高温热浪风险评估体系,获取2017年长江中下游城市群250 m分辨率的典型高温热浪事件风险评估结果。结果表明:热浪风险等级高值区主要分布在城市群中心城市以及其他城市中心城区,主要是较高的城市高温和社会经济脆弱性共同作用结果,围绕中心城区向外扩散,风险等级呈逐渐降低趋势。大城市虽具有更好的高温适应性,但离应对城市化导致的高温危险性和脆弱性还显得不足,从高风险区域面积来看,长三角城市群热浪风险高于长江中游城市群,主要与城市化水平以及人口聚集程度有关。通过多源遥感信息,获取高分辨率的城市群高温热浪风险空间分布特征,能为城市化过程中城市有效应对高温风险,加强区域防灾减灾提供科学参考。

Abstract: Abstract:The frequent occurrence of extreme heat wave events caused by global warming and rapid urbanization has affected human production and life.This paper using multi-source satellite remote sensing data and social economic statistical data, based on "high temperature risk, socio-economic vulnerability and risk adaptability" heat wave risk assessment system, to obtain the risk assessment results of typical heat wave events in the middle-lower Yangtze River in 2017.The results showed that the high-risk areas of heat wave grade were mainly distributed in the central cities of urban agglomerations and other urban central areas, mainly due to the joint effect of high urban heat temperature and social economic vulnerability.Around the central urban area, the risk level gradually decreases.Although the big cities had better adaptability to high temperature, they were far from coping with the high-temperature risk and vulnerability caused by urbanization.From the perspective of high-risk area, the heat wave risk of the Yangtze River Delta urban agglomeration was higher than the middle reaches of the Yangtze River, which was mainly related to the level of urbanization and the degree of population aggregation.Through Multi-source satellite remote sensing information data to obtain high-resolution spatial distribution information characteristics of heat wave risk in urban agglomerations, which can provide scientific reference for cities to effectively cope with high-temperature risk and strengthen regional disaster prevention and mitigation in the process of urbanization.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .
[2] 葛刚, 徐燕花, 赵磊, 吴志强, 吴兰. 鄱阳湖典型湿地土壤有机质及氮素空间分布特征[J]. 长江流域资源与环境, 2010, 19(06): 619 .
[3] 叶宏萌 |袁旭音 |徐荆棘. 南京近城市河流沉积物营养水平与磷形态的空间分布[J]. 长江流域资源与环境, 2011, 20(10): 1262 .
[4] 李学梅|任志远. 近十年重庆市NDVI变化及对气温降水的旬响应特征分析[J]. 长江流域资源与环境, 2014, 23(01): 101 .
[5] 苏国欢, 沙永翠, 熊鹰, 张培育, 徐军. 大坝截流前后金沙江观音岩水电站鱼类群落功能多样性的变化[J]. 长江流域资源与环境, 2015, 24(06): 965 -970 .
[6] 王丰龙, 曾刚, 叶琴, 陈弘挺. 基于创新合作联系的城市网络格局分析——以长江经济带为例[J]. 长江流域资源与环境, 2017, 26(06): 797 -805 .
[7] 叶小康,董 斌*,王 成,黄 慧,陈凌娜,朱 鸣,彭文娟,周 强. 升金湖湿地时空演变对越冬鹤类种群动态的影响[J]. 长江流域资源与环境, 2018, 27(01): 41 .
[8] 唐恩斌, 张梅青.  

高铁背景下城市铁路可达性与空间相互作用格局——以江西省为例 [J]. 长江流域资源与环境, 2018, 27(10): 2241 -2249 .

[9] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 -2462 .
[10] 王 冰, 程 婷. 我国中部城市环境全要素生产率的时空演变——基于Malmquist-Luenberger生产率指数分解方法[J]. 长江流域资源与环境, 2019, 28(01): 48 -59 .