长江流域资源与环境 >> 2021, Vol. 30 >> Issue (3): 699-711.doi: 10.11870/cjlyzyyhj202103017

• 生态环境 • 上一篇    下一篇

长沙地区典型树木蒸腾对环境因子的响应及模拟

戴军杰1,章新平1* ,罗紫东1,刘仲藜1,黎祖贤2   

  1. (1. 湖南师范大学资源与环境科学学院,湖南 长沙 410081;2. 湖南省气象局,湖南 长沙 410007)
  • 出版日期:2021-03-20 发布日期:2021-04-07

Response and Modeling of Transpiration to Environmental Factors for Typical Trees Species in Changsha Area

DAI Jun-jie 1, ZHANG Xin-ping 1, LUO Zi-dong 1, LIU Zhong-li 1, LI Zu-xian 2   

  1. (1. College of Resources and Environmental Sciences,Hunan Normal University, Changsha 410081, China; 2. Hunan Provincial Meteorological Bureau, Changsha 410007, China)
  • Online:2021-03-20 Published:2021-04-07

摘要: 以长沙地区的桂花树、樟树、马尾松和枫香等典型树木为研究对象,基于2013~2015年监测的树木茎水势、树干液流、土壤水分和各气象因素,探究树木蒸腾对环境因子的响应;利用MJS、BTA和MBTA蒸腾模型模拟4种典型树木的蒸腾,选出适合当地气候条件的最优模型。结果表明:在非干旱期间,树木蒸腾对降水和土壤水分的敏感性较弱,太阳辐射对桂花树和马尾松蒸腾的影响最大,敏感系数>0.75,而樟树与枫香的蒸腾对太阳辐射和水汽压亏缺的敏感性均强。在2013年夏季干旱期间,土壤含水量是树木蒸腾的主导因子,敏感系数>0.71,气温和水汽压亏缺对树木蒸腾均有抑制作用。3个模型中,MBTA模型对树木蒸腾的模拟效果最好,相对误差低于5%;BTA模型未能模拟出2013年夏季干旱时树木日蒸腾量的下降过程,且明显高估2014~2015年生长季马尾松的蒸腾水平;MJS模型对树木蒸腾的模拟效果一般。3个模型对2013年生长季树木蒸腾的模拟效果均较2014~2015年生长季的模拟效果差,这表明当环境胁迫超出树木的适应范围时,树木生理结构会发生改变,并导致基于环境因子构建的蒸腾模型模拟精度降低。

Abstract: Stem water potential and trunk sap flow for some typical tree species including Osmanthus fragrans, Cinnamomum camphora, Pinus massoniana and Liquidambar formosana in Changsha were monitored from 2013 to 2015. Meanwhile, the meteorological factors and soil moisture were measured in parallel. The main objects are to explore the response of transpiration to environmental factors, and to select an optimal transpiration model for this area by comparing the performance of the MJS, BTA and MBTA models. The results show that during the non-drought period, tree transpiration was less sensitive to precipitation and soil moisture. Solar radiation exerted the greatest effects on Osmanthus fragrans and Pinus massoniana transpiration with the sensitivity coefficient > 0.75, while the sensitivity of transpiration for Cinnamomum camphora and Liquidambar formosana tree to solar radiation and water vapor pressure deficit was strong. During the drought period in 2013, soil water content was the dominant factor for tree transpiration with the sensitivity coefficient > 0.71, and then tree transpiration was limited by the effects of temperature and water vapor pressure deficits. Among the three models, the MBTA model performed the best in fitting the observed tree transpiration, with a relative error was less than 5%; the BTA model failed to simulate the decline of the tree's daily transpiration during the drought period in 2013, and significantly overestimated transpiration of Pinus massoniana during the growth season in 2014 and 2015; the simulation accuracy of MJS model was not good. The performance of the three models in the growth season of 2013 was worse than that in 2014 and 2015, indicating that when the environmental stress exceeded the adaptive range of trees, the physiological structure of trees was likely to be changed, which leads to a reduction of the simulation accuracy of transpiration model constructed by environmental factors.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何璐, 虞泓, 范源洪, 沙毓沧, 袁理春. 麻疯树(Jatropha curcas L.)植物学研究进展[J]. 长江流域资源与环境, 2010, 19(z1): 120 .
[2] 许艳|濮励杰|张润森|朱明. 近年来江苏省海岸带土地利用/覆被变化时空动态研究[J]. 长江流域资源与环境, 2012, 21(05): 565 .
[3] 沈惊宏, 孟德友, 陆玉麒. 湖南省温泉资源开发潜力评价[J]. 长江流域资源与环境, 2012, 21(06): 692 .
[4] 陈 锋 | 赵先富 | 赵进勇 | 李 敏. 瓯江鱼类资源调查及保护对策[J]. 长江流域资源与环境, 2012, 21(08): 934 .
[5] 李远平|杨太保|马建国. 大别山北坡典型区域降水年内分配不均匀性特征研究——以安徽省六安市为例[J]. 长江流域资源与环境, 2012, 21(9): 1148 .
[6] 杨 俊| 王占岐| 金贵| 程丙银| 侯现慧. 基于AHP与模糊综合评价的土地整治项目实施后效益评价[J]. 长江流域资源与环境, 2013, 22(08): 1036 .
[7] 何 丹| 杨犇. 高速铁路对沿线地区可达性的影响研究——以皖北地区为例[J]. 长江流域资源与环境, 2013, 22(11): 1264 .
[8] 徐昔保,陈 爽,杨桂山. 长三角地区城市居民出行交通碳排放特征与影响机理[J]. 长江流域资源与环境, 2014, 23(08): 1064 .
[9] 吴志杰, 何云玲. 基于SPEI的云南中部区域干旱时空变化特征分析[J]. 长江流域资源与环境, 2015, 24(07): 1238 -1245 .
[10] 朱希扬, 潘晨, 刘敏, 杨芳, 贾文晓, 象伟宁. 上海春季近地面大气CO2浓度空间分布特征及其影响因素分析[J]. 长江流域资源与环境, 2015, 24(09): 1443 -1450 .