长江流域资源与环境 >> 2021, Vol. 30 >> Issue (9): 2253-2263.doi: 10.11870/cjlyzyyhj202109019

• 生态环境 • 上一篇    下一篇

夏热冬冷地区屋顶绿化全年能耗削减及成本效益

何云菲,彭立华,杨小山,冯宁叶   

  1. (南京工业大学建筑学院绿色建筑与生态城市实验室,江苏 南京 211816)
  • 出版日期:2021-09-20 发布日期:2021-09-27

Annual Energy Effects and Cost-Benefit Analysis of Green Roofs in A Hot-Summer-Cold-Winter Climate

HE Yun-fei, PENG Li-hua, YANG Xiao-shan, FENG Ning-ye   

  1. (Laboratory of Green Building and Eco-city, School of Architecture, Nanjing Tech University, Nanjing 211816, China)
  • Online:2021-09-20 Published:2021-09-27

摘要: 绿化屋顶的降温节能效益已有诸多文献报导,但专门针对夏热冬冷地区不同屋顶绿化模式的全年能耗模拟研究并不多见。以南京为例,采用EnergyPlus模型分析粗放、半密集、密集3类典型屋顶绿化的全年建筑能耗削减效应及季节规律,基于降温节能价值开展成本效益分析。结果表明,屋顶绿化能够通过蒸散与隔离作用调节建筑屋顶表面温度,夏季以降温为主,最大降温幅度为29.3℃,冬季以保温为主,最高升温幅度为13℃。夏冬两季屋顶表面温度的降低/升高分别引起建筑制冷/热负荷的削减:粗放、半密集、密集3种绿化屋顶夏季制冷负荷削减率分别为-0.4%、2%和2.4%,冬季制热负荷分别降低16.5%、23.1%和28.3%,全年建筑能耗削减率为1.9%、4.9%和5.9%,其中,顶层能耗削减占削减总量的11%~71%。成本效益分析结果表明,密集型屋顶绿化的财务净现值最大、投资回报率最高,但3类绿化屋顶在40年生命周期内均无法通过能耗削减效益收回投资成本。研究结果可为同气候区屋顶绿化设计与推广提供参考。

Abstract: It is widely reported that green roof can lower building surface temperature and cut building energy consumption. However, few studies have explored the annual energy effects of typical green-roof types in hot-summer-and-cold-winter areas. Taking Nanjing as an example, this research investigated the annual energy performance of three green roofs, extensive, semi-intensive and intensive, using the building energy simulation software EnergyPlus. Based on the simulation results, a cost-benefit analysis was performed for the three green roofs. The results suggest that green roofs can regulate roof surface temperature through the evapotranspiration and thermal insulation processes, which are characterized by a cooling effect in summer and a dominant warming effect in winter. The summer cooling intensity can reach 29.3℃, and the maximum winter warming intensity is 13℃. The reduction/increase of roof surface temperature in summer and winter respectively lead to the decrease of building cooling/heating loads. The summer cooling load of the extensive, semi-intensive and intensive green roofs can be reduced by -0.4%, 2% and 2.4%, respectively. The winter heating load of the three green roofs can be reduced by 16.5%, 23.1% and 28.3%, respectively. As a result, the annual energy-saving rates are 1.9%, 4.9% and 5.9% for the three green roofs, with the top floors accounting for 11.1%-71% of the total savings. The cost-benefit analysis reveals that the intensive green roof has the highest net present value and the shortest payback period, but none of the three green roofs can recover the investment cost through the energy-saving benefits during their 40-year life cycle. The above findings may contribute to roof-greening and low-carbon practices for cities in similar climate zones as Nanjing.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[2] 熊鸿斌, 周凌燕. 基于PSR-灰靶模型的巢湖环湖防洪治理工程生态环境影响评价研究[J]. 长江流域资源与环境, 2018, 27(09): 1977 -1987 .
[3] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[4] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[5] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568 -2577 .
[6] 王海力, 韩光中, 谢贤健. 基于DEA模型的西南地区耕地利用效率时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 2784 -2795 .
[7] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[8] 赵树成, 张展羽, 夏继红, 杨洁, 盛丽婷, 唐丹, 陈晓安, . 鄱阳湖滨岸土壤磷素吸附特征研究[J]. 长江流域资源与环境, 2019, 28(01): 166 -174 .
[9] 阮甜, 查芊郁, 杨茹, 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019, 28(02): 407 -415 .
[10] 邵祎婷, 何毅, 穆兴民, 高鹏, 赵广举, 孙文义, . 秦巴山区降雨侵蚀力时空变化特征[J]. 长江流域资源与环境, 2019, 28(02): 416 -425 .