长江流域资源与环境 >> 2022, Vol. 31 >> Issue (10): 2186-2196.doi: 10.11870/cjlyzyyhj202210008

• 自然资源 • 上一篇    下一篇

澜沧江-怒江中上游河段水温时空特性及差异分析

裘思谦1,许  尤2,徐雅倩2,赵星星1,龙良红1,3*,纪道斌1,3,杨正健1,3   

  1. (1. 三峡大学水利与环境学院,湖北 宜昌  443002;2. 湖北工业大学河湖生态修复与藻类利用湖北省重点实验室,湖北 武汉 430068; 3. 三峡大学三峡水库生态系统湖北省野外科学观测研究站,湖北 宜昌  443002)
  • 出版日期:2022-10-20 发布日期:2022-10-27

Spatio-temporal Variations Characteristics and Differences of Water Temperature in  Upper and Middle Reaches of Lancang-Nujiang River

QIU Si-qian1, XU You2, XU Ya-qian2, ZHAO Xing-xing1, LONG Liang-hong1,3, JI Dao-bin1,3, YANG Zheng-jian1,3   

  1. (1. College of Hydraulic and Environment Engineering, China Three Gorges University, Yichang  443002, China;2. Hubei Provincial Key Laboratory of Ecological Restoration of River-Lakes and Algal Utilization,Hubei University of Technology, Wuhan 430068, China;3. Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, Yichang  443002, China)
  • Online:2022-10-20 Published:2022-10-27

摘要: 为探究自然河段与梯级水库段水温时空变化的差异,于2016~2020年选取了32个监测断面进行原位水温监测,并采用水温沿程变化率、库水替换次数、水体滞留时间、水温连续性评价指标,对比分析了干流无水电站建设的怒江和有梯级水库建设的澜沧江的水温时空分布特征。结果表明:怒江与澜沧江建库前的水温在纵向上呈现出较好的连续性特征,与气温沿程变化基本一致;水温非连续性强度均值仅为0.04,表明自然因素对水温空间连续性的影响有限。受气象条件的影响,怒江不同时期水温沿程变化率略有差异,1月最大为1.32℃·100  km-1,10月最小为1.02℃·100  km-1。怒江平均水温沿程变化率(1.17±0.12℃·100  km-1)高于自然状态下的澜沧江(0.58±0.11℃·100  km-1),两河流的流量的差异可能是主要影响因素。流域梯级水电开发显著改变了澜沧江中上游河段的水温沿程自然变化特征,受水库下泄水温滞后效应的影响,水温沿程出现明显的落差且波动剧烈。黄登水库是对水温空间连续性破坏明显的水库,水温非连续性强度显著高于其他水库,而乌弄龙、里底、大华桥水温非连续性强度处于较低的水平,接近自然河流状态。梯级开发对水温空间连续性的影响具有复杂性,受梯级水库联合运行、单库规模、调节性能等因素的综合作用,不同类型水库的影响存在差异。

Abstract: In order to explore the differences of water temperature variation in the natural-section and cascade reservoirs section of the Lancang River and the Nujiang River, the along-track rate of water temperature (RWT), reservoir renewal times (α number), water residence time and temperature continuation evaluation index are calculated by the field data at 32 monitoring sites from 2016-2020. The spatial distribution characteristics of water temperature were analyzed. The results indicate that: the longitudinal variation of water temperature in Nujiang River and Lancang River before the construction of the reservoir is relatively regular, which is basically consistent with the variation of air temperature along the river. The mean value of water temperature continuation evaluation index is only 0.04, indicating that the natural factors have limited influence on the spatial continuity of water temperature. Affected by meteorological conditions, the RWT of Nujiang River in different periods is slightly different, the maximum is 1.32℃·100  km-1 in January and the minimum is 1.02℃·100  km-1 in October. The average RWT of Nujiang River is higher than that of Lancang River in the natural state, which are (1.17±0.12℃·100  km-1)and(0.58±0.11℃·100  km-1), respectively. The analysis suggests that the river flow may be the main factor causing the difference. Cascade reservoirs has significantly changed the natural variation characteristics of water temperature along the middle and upper reaches of the Lancang River. Affected by the lagged effect of water temperature in the reservoir, the water temperature has an obvious drop and fluctuates sharply along the river. The water temperature continuation evaluation index of Huangdeng Reservoir is significantly higher than that of other reservoirs, while the water temperature continuation evaluation index of Wunonglong, Lidi and Dahuaqiao reservoir is at a lower level, close to the state of natural rivers. The effect of cascade reservoirs on the spatial continuity of water temperature is complicated. Due to the combined operation of cascade reservoirs, the scale of single reservoir, and the regulation performance, the influence of different types of reservoirs is different.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李玉平,蔡运龙. 浙江省耕地变化与粮食安全的分析及预测[J]. 长江流域资源与环境, 2007, 16(4): 466 .
[2] 孙 晨, 刘 敏. 再分析资料在三峡库区气候效应研究中的应用[J]. 长江流域资源与环境, 2018, 27(09): 1998 -2013 .
[3] 崔鑫 靳文佳 王永杰 周立旻 郑祥民. 上海市公园湖泊表层沉积物中汞的特征及其污染评价[J]. 长江流域资源与环境, , (): 0 .
[4] 邓鹏鑫, 邴建平, 贾建伟, 王栋. 汉江流域1956~2016年汛期降水时空演变格局[J]. 长江流域资源与环境, 2018, 27(09): 2132 -2141 .
[5] 董捷 魏旭华 陈恩. 土地利用碳排放地域差异下减排责任分摊研究——以武汉城市圈为例[J]. 长江流域资源与环境, , (): 0 .
[6] 赵玉岩, 栾维新, 王 辉, 马 瑜.  

城市核心建成区对邻近新增建设用地影响研究——以长江三角洲为例 [J]. 长江流域资源与环境, 2018, 27(10): 2172 -2181 .

[7] 黄杰龙, 陈秋华, 幸绣程, 王立群.  

中国省域森林公园旅游产业竞争力的时空演化特征及影响因素 [J]. 长江流域资源与环境, 2018, 27(10): 2305 -2315 .

[8] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 -2462 .
[9] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505 -2517 .
[10] 周彦锋, 吕大伟, 葛 优, 王晨赫, 刘剑羽, 张 丽, 尤 洋, . 淀山湖河蚬翘嘴红鲌国家级水产种质资源保护区翘嘴鲌产卵场现状[J]. 长江流域资源与环境, 2018, 27(12): 2733 -2739 .