长江流域资源与环境 >> 2022, Vol. 31 >> Issue (2): 426-435.doi: 10.11870/cjlyzyyhj202202016

• 生态环境 • 上一篇    下一篇

长江源多年冻土区典型坡面土壤水稳定同位素特征

邓国江1,刘光生1,2*,陈联荣1,2,廖怡平1   

  1. (1.厦门理工学院环境科学与工程学院, 福建 厦门 361000;2.福建省农村污水处理与用水安全工程研究中心,福建 厦门 361000)
  • 出版日期:2022-02-20 发布日期:2022-03-21

Stable Isotope Characteristics of Soil Water in A Typical Permafrost Influenced Hillslope in the Source Region of Yangtze River

DENG Guo-jiang1, LIU Guang-sheng1,2, CHEN Lian-rong1,2, LIAO Yi-ping1   

  1. (1.College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361000, China;2.Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety,Xiamen 361000, China)

  • Online:2022-02-20 Published:2022-03-21

摘要: 识别多年冻土区坡面土壤水分迁移过程是认识寒区产汇流过程的关键。同位素技术可在不破坏土壤原始结构情况下,最大限度获取水文过程信息。基于长江源多年冻土流域活动层融化期(融化深度100 cm左右)采集的典型坡面土壤水、地下水、降水和河水样品,分析不同水体的稳定同位素特征,探索土壤水分迁移规律。结果表明:研究区土壤水δ18O为-14.58‰ ~ -1.58‰,均值为-8.25‰;δD为-103.88‰ ~ -14.99‰,均值为-59.94‰;土壤水、河水和地下水同位素点均分布于局地大气降水线附近,表明降水为上述水体的主要来源;蒸发线的斜率和截距均小于局地大气降水线,其中地下水线(GWLE)的斜率最低,且地下水呈重稳定同位素富集现象,说明地下水受蒸发和混合效应的影响,在迁移转换过程中经历了一定程度的蒸发;根系层结构的复杂性使其土壤水的同位素值变幅最大,也存在重稳定同位素富集现象,其较低的氘盈余(d-excess)表明根系层经历了强烈的蒸发分馏过程;研究期除河水外其他水体随时间变幅较大;降水对于土壤水同位素的影响较小,而地下水和20 ~ 50 cm土壤水对河水的贡献占主导地位。本研究对于认识寒区产汇流过程具有积极意义,也为寒区径流过程模拟及预测提供参考依据。

Abstract: Identifying soil moisture transfer processes in permafrost influenced hillslopes is a key to understanding runoff generation processes in cold region. Isotope technology can obtain the information of hydrological process without destroying the original structure of soil. In this study, precipitation, groundwater, river water, and the soil water were collected during the thawing period of active layer (the thawing depth was about 100 cm) in a typical hillslope of permafrost watershed. The stable isotope characteristics of different water bodies was analyzed to explore the regularity of soil water migration in the source region of the Yangtze River (SRYR). The results indicated that, the variation of soil water δ18O was -14.58‰ ~ -1.58‰ (mean -8.25‰), the δD was -103.88‰ ~ -14.99‰ (mean -59.94‰). The isotopic component of soil water, river water and groundwater were all distributed near the local meteoric water line (LMWL), indicating that precipitation was the main source of these water bodies. The slope and intercept of evaporation lines were lower than that of LMWL, and the slope of groundwater evaporation line (GWEL) was the lowest, and it showed a heavy isotope enrichment, which indicated that the groundwater had experienced a certain degree of evaporation in the process of migration and transformation under the influence of evaporation and mixing effect. The complexity structure system of root layer made the soil water isotope show the most great variation and also had a heavy isotope enrichment phenomenon. The low d-excess value of the root layer indicated that it undergo a strong evaporative fractionation process. Except for river water, other water bodies had a greater temporal changes during the study period. Precipitation had little impact on soil water isotope compositions, while groundwater and soil water at 20~50 cm depth dominated the contribution of river water. This study has a positive significance for understanding the process of runoff generation and concentration in cold regions, and also provide basis for simulation and prediction of runoff process in cold region.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[2] 张梦薇, 吕成文. 丰乐河流域表层土壤有机碳空间变异特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1420 .
[3] 郭莎莎, 胡守庚, 瞿诗进. 长江中游地区多尺度耕地景观格局演变特征[J]. 长江流域资源与环境, 2018, 27(07): 1455 .
[4] 田雨 周宝同 付伟 王蓉. 2000-2015年山地城市土地利用景观格局动态演变研究—以重庆市渝北区为例[J]. 长江流域资源与环境, , (): 0 .
[5] 张文婷. 江西省不同地貌单元耕地土壤有机碳空间变异的尺度效应[J]. 长江流域资源与环境, 2018, 27(11): 2619 -2628 .
[6] 曾源源, 胡守庚, 瞿诗进, . 长江中游经济带交通区位条件变化与建设用地扩张时空耦合规律[J]. 长江流域资源与环境, 2018, 27(12): 2651 -2662 .
[7] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[8] 杨远琴, 任 平, 洪步庭, . 基于生态安全的三峡库区重庆段土地利用冲突识别[J]. 长江流域资源与环境, 2019, 28(02): 322 -332 .
[9] 王 倩, 王云琦, 马 超, 王 彬, 李一凡. 缙云山针阔混交林碳通量变化特征及影响因子研究[J]. 长江流域资源与环境, 2019, 28(03): 565 -576 .
[10] 卢德彬, 毛婉柳, 杨东阳, 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, 2019, 28(03): 651 -660 .