长江流域资源与环境 >> 2019, Vol. 28 >> Issue (03): 651-660.doi: 10.11870/cjlyzyyhj201903016

• 生态环境 • 上一篇    下一篇

基于多源遥感数据的中国PM2.5变化趋势与影响因素分析

卢德彬1,2,毛婉柳3* ,杨东阳4,赵佳楠2   

  1. (1.铜仁学院旅游与地理系,贵州 铜仁 554300;2.华东师范大学地理科学学院,上海 200241;
    3.浙江省地理信息中心,浙江 杭州 310012;4.河南省大气污染综合防治与生态安全重点实验室,河南 开封 475004)
  • 出版日期:2019-03-20 发布日期:2019-03-22

Analysis on the Trend and Influencing Factors of PM2.5 in China Based on Multi-source Remote Sensing Data

LU De-bin 1, 2, MAO Wan-liu 3, YANG Dong-yang 4, ZHAO Jia-nan 2   


  1. (1.Department of Tourism and Geography, Tongren University, Tongren 554300,China; 2. School of Geographic Sciences,
    East China Normal University, Shanghai 200241,China; 3.Geomatics Center of Zhejiang,Hangzhou 310012,China;
    4.Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security,Kaifeng 475004,China)
  • Online:2019-03-20 Published:2019-03-22

摘要: 基于长时间序列的遥感反演PM2.5数据,采用Theil-Sen median趋势分析、Mann-Kendall、R/S和相关系数分析法,分析了1998~2014年我国PM2.5时空格局、空间变化特征以及污染来源。结果表明:1998~2014年期间,最高只有24.67%的国土面积上,PM2.5浓度达到世界卫生组织(WHO)的年平均准则值10 μg/m 3的要求;PM2.5浓度小于10 μg/m 3地区主要是青藏高原、台湾、北疆,内蒙古北部和黑龙江西北部,年均PM2.5浓度大于95 μg/m 3的地区主要是南疆和华北平原。1998~2014年期间,全国61.84%的国土面积PM2.5浓度呈上升趋势,平均上升了3.91 μg/m 3,上升最大值为39.1 μg/m 3。其中,呈显著上升的地区主要分布在中西部地区和华北平原,且未来部分地区仍呈增长的趋势。PM2.5浓度上升的驱动因素包括自然因素与人类活动排放,其中,南疆的PM2.5主要来自塔克拉玛干沙漠的沙尘气溶胶,而其他地区PM2.5主要来自人类活动排放。

Abstract: Based on the remote sensing retrieval of PM2.5 data in the long-time series, the temporal-spatial pattern of PM2.5 as well as its variation and sources of pollution in China from 1998 to 2014 were revealed by using the Theil-Sen median trend analysis, Mann-Kendall test and correlation analysis methods. The results showed that PM2.5 concentration reached the annual average criterion value of 10  μg/m3 specified by the World Health Organization (WHO) in the land area of only 24.67% during the period from 1998 to 2014. PM2.5 concentrations were less than 10 μg/m3 mainly in the Qinghai-Tibet Plateau, Taiwan, northern Xinjiang, north of Inner Mongolia and northwest of Heilongjiang, while the average annual PM2.5 concentrations were greater than 95 μg/m3 mainly in southern Xinjiang and North China Plain. During the period from 1998 to 2014, the concentration of PM2.5 increased by an average of 3.91 μg/m3 and the maximum value was 39.1 μg/m3 in 61.84% of the national land area. Among them, the central and western regions and the North China Plain exhibited a significant rising trend and some regions still show an increasing trend in the future. The driving factors of increase in PM2.5 concentration included natural factors and emissions from human activities, wherein it mainly came from the sand dust aerosol in the Taklimakan Desert in the southern Xinjiang, while those in the other areas mainly came from emissions in the human activities.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[2] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[3] 刘方炎,李 昆,马姜明,. 金沙江干热河谷几种引进树种人工植被的生态学研究[J]. 长江流域资源与环境, 2008, 17(3): 468 .
[4] 陈永柏, 邓 云| 梁瑞峰. 溪洛渡水电站叠梁门取水方式减缓下泄低温水的优化调度[J]. 长江流域资源与环境, 2010, 19(03): 340 .
[5] 田忠志, 邢友华, 姜瑞雪, 高雁. 东平湖表层沉积物中磷的形态分布特征研究[J]. 长江流域资源与环境, 2010, 19(06): 724 .
[6] 刘春霞, 李月臣, 杨华. 三峡库区(重庆段)石漠化敏感性评价及空间分异特征[J]. 长江流域资源与环境, 2011, 20(3): 291 .
[7] 杨永生| 温天福| 刘聚涛. 基于用水总量控制的水资源承载能力分析研究——以赣江袁河流域为例[J]. 长江流域资源与环境, 2012, 21(03): 276 .
[8] 陈文静| 张燕萍| 赵春来| 王昌来. 近年长江湖口江段鱼类群落组成及多样性[J]. 长江流域资源与环境, 2012, 21(06): 684 .
[9] 曹志宏 |陈志超 |郝晋珉. 中国城乡居民食品消费变化趋势分析[J]. 长江流域资源与环境, 2012, 21(10): 1173 .
[10] 杨茂灵 |王 龙 |高 瑞 |杨 蕊 |戚 娜. 南盘江流域近30年季节性干旱时空分布特征[J]. 长江流域资源与环境, 2013, 22(02): 220 .