长江流域资源与环境 >> 2022, Vol. 31 >> Issue (5): 1039-1050.doi: 10.11870/cjlyzyyhj202205009

• 自然资源 • 上一篇    下一篇

汛末长江中下游主要营养盐输送特征及支流水系贡献

俞  洋1,2,3,王丹阳1,2,汤显强1,2*,黎  睿1,2   

  1. (1.长江科学院流域水环境研究所,湖北 武汉 430010;2. 长江科学院流域水资源与生态环境科学湖北省重点实验室,湖北 武汉 430010;3. 中国长江三峡集团有限公司长江生态环境工程研究中心,北京 100038)
  • 出版日期:2022-05-20 发布日期:2022-06-02

Transport Characteristics of Main Nutrients and Contribution of Tributaries in Middle and Lower Reaches of Yangtze River at End of Flood Season

YU Yang1,2,3, WANG Dan-yang1,2, TANG Xian-qiang1,2, LI Rui1,2   

  1. (1. Basin Water Environment Department, Yangtze River Scientific Research Institute, Wuhan 430010, China; 2. Hubei Provincial Key Lab of Basin Water Resource and Eco-environmental Science, Yangtze River Scientific Research Institute, Wuhan 430010, China; 3. China Three Gorges Corporation,Eco-Environmental Engineering Research Center, Beijing 100038, China)
  • Online:2022-05-20 Published:2022-06-02

摘要: 为分析长江中下游氮、磷、硅等营养盐的输送特征及洞庭湖、汉江、鄱阳湖对干流营养盐输送的贡献,于2020年9月自三峡坝前至河口及洞庭湖、汉江、鄱阳湖长江入汇口沿程采集水样,测定氮、磷、硅等营养盐浓度并分析沿程变化趋势,计算总氮、总磷和溶解硅通量及主要支流贡献。结果表明:长江中下游总氮浓度沿程下降,在1.23~2.32 mg/L间波动,溶解态占比超过95%;总磷浓度沿程上升,在0.01~0.08 mg/L间波动,以颗粒态为主;溶解硅浓度在汉口断面突增,三峡坝前-汉口江段均值为5.52 mg/L,汉口-河口江段均值升高为10.8 mg/L。总氮、总磷、溶解硅通量均沿程明显上升。洞庭湖、汉江及鄱阳湖对干流营养盐输送贡献较大,其中洞庭湖对总氮、总磷、溶解硅输送通量的贡献分别达到163.2%、67.9%、23.6%,但其汇入后干流水质类别未发生明显变化。洞庭湖、汉江及鄱阳湖汇入后干流水体综合营养状态指数波动范围在 -12.72% 至7.85%。本研究有助于了解长江中下游营养状态及支流湖泊对干流的贡献,为中下游水环境管理提供科学依据。

Abstract: In order to analyze the transmission characteristics of nitrogen, phosphorus and silicon in the middle and lower reaches of the Yangtze river and the contribution of the Dongting Lake, Han River and Poyang Lake to the main stream, water samples were collected from the front of the Three Gorges dam to the estuary along the main stream and the entrances to the Yangtze River of the Dongting Lake, Han River and Poyang Lake in September 2020. Concentrations of nitrogen, phosphorus, silicon were measured, the variation trend of nutrient along the river was analyzed, nutrient flux and contribution of main tributaries were calculated. The results show that the total nitrogen concentration in the middle and lower reaches of the Yangtze River decreases along the river and fluctuates between 1.23 mg/L and 2.32 mg/L, and the proportion of dissolved nitrogen is more than 95%. The concentration of total phosphorus increases along the course and fluctuates between 0.01-0.08 mg/L, mainly in granular form. The dissolved silicon concentration increases sharply at the Hankou section, and the mean value from the front of the Three Gorges Dam to Hankou section is 5.52 mg/L, and the mean value from the Hankou section to estuary is 10.8 mg/L. Fluxes of total nitrogen, total phosphorus and dissolved silicon all increase obviously along the river. The tributary river and lakes contributes a lot to the transport of nutrients in the main stream, among which Dongting Lake contributed the most, contributing 163.2%, 67.9% and 23.6% to the transport fluxes of total nitrogen, total phosphorus and dissolved silicon respectively, but the water quality of the main stream does not change obviously after Dongting Lake enters. The comprehensive trophic level index fluctuates between -12.72% and 7.85% after the Dongting Lake, Han River and Poyang Lake merge into the main stream. This study is helpful to understand the nutrient status of the middle and lower reaches of the Yangtze River and the contribution of the tributary river and lakes to the main stream, and to provide scientific basis for water environmental management in the middle and lower reaches of the Yangtze River.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蒋豫. 太湖流域沉积物中有机氯农药空间分布特征及风险评价[J]. 长江流域资源与环境, , (): 0 .
[2] 卢德彬 毛婉柳 杨东阳 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, , (): 0 .
[3] 胡继亮 熊自洁 张悦 高婷. 2019年2期自然灾害水平对农户投保意愿的影响分析——基于湖北微观调查数据[J]. 长江流域资源与环境, , (): 0 .
[4] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[5] 潘超, 周驰, 苗滕, 刘林峰, 高健, 焦一滢, 李祝, 张佳敏, 王卉君, 徐德雄. 长江流域鄂西四河流大型底栖动物群落结构特征及水质生物学评价[J]. 长江流域资源与环境, 2018, 27(11): 2529 -2539 .
[6] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[7] 畅华仪, 张俊飚, 何可, . 技术感知对农户生物农药采用行为的影响研究[J]. 长江流域资源与环境, 2019, 28(01): 202 -211 .
[8] 阮甜, 查芊郁, 杨茹, 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019, 28(02): 407 -415 .
[9] 荣欣 易桂花 张廷斌 李景吉 别小娟 覃艺 夏杰. 2000-2015年川西高原植被EVI海拔梯度变化及其对气候变化的响应[J]. 长江流域资源与环境, , (): 0 .
[10] 夏四友 赵媛 文琦 许昕 崔盼盼. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, , (): 0 .