长江流域资源与环境 >> 2023, Vol. 32 >> Issue (12): 2649-2660.doi: 10.11870/cjlyzyyhj202312016

• 生态环境 • 上一篇    下一篇

中国近地表臭氧浓度的时空变化及其城市群分布特征——兼论“十三五”以来我国臭氧污染防治成效

张欢1,2,梅煜臻1,吴瑛祖1,郑锦航1,陈文熙1,王若愚1   

  1. (1. 中国地质大学(武汉)经济管理学院,湖北 武汉 430078;2.中国地质大学(武汉)资源环境经济研究中心,湖北 武汉 430078) 
  • 出版日期:2023-12-20 发布日期:2023-12-25

Spatial-temporal Variation of Near-Surface Ozone Concentration and  Distribution Characteristics of Urban Agglomerations in China:  Also on the Effectiveness of Ozone Pollution Prevention and  Control Since the "Thirteenth Five-Year Plan" Period

ZHANG Huan1,2,MEI Yu-zhen1,WU Ying-zu1,ZHENG Jin-hang1,CHEN Wen-xi1,WANG Ruo-yu1   

  1. (1. School of Economics and Management, China University of Geosciences, Wuhan 430078, China; 2. Resource Environment Economic Research Center,China University of Geosciences,Wuhan 430078, China)
  • Online:2023-12-20 Published:2023-12-25

摘要:  臭氧污染防治是我国“十四五”时期深入开展污染防治行动的三大标志性战役之一。研究选取2015~2021年近地表O3日最大8 h监测值等数据,探索了全国、省域、城市群及重点城市近地表O3浓度时空变化特征,论述了“十三五”时期以来我国臭氧污染治理成效。研究表明:(1)“十三五”时期以来我国近地表O3浓度年度值先升后降,2021年较2019年浓度阶段高值降低约8.2%,增长趋势已得到了遏制,高值集中在5~9月的春、夏季和初秋。(2)全国近地表O3浓度空间分布呈现以胡焕庸线为界“东高西低”态势,中高值区主要集中在华北地区并向华中地区及沿海城市扩散。(3)城市群近地表O3浓度表现出“连片化”分布特征,东部城市群浓度比西部城市群高,京津冀、长三角和中原城市群等华北及华东地区的城市群O3浓度相对较高。(4)优化提升的国家级城市群的臭氧污染得到了明显改善,京津冀、长三角、珠三角、成渝、长江中游五大城市群在2019~2021年间O3浓度减幅分别达到了15.51%、6.35%、11.66%、5.26%、12.56%;发展壮大的区域级城市群中处于北部的城市群的O3浓度较高,南部沿海的粤闽浙沿海、北部湾城市群的O3浓度相对较低;培育发展的地区级城市群O3浓度相对良好,其内中心城市O3浓度存在较大差异,太原、哈尔滨、银川、乌鲁木齐等重点城市O3浓度呈上升趋势。研究认为,我国臭氧污染防治攻坚战应以5~9月的春、夏季和初秋为重点时段,重点开展京津冀、长三角和关中平原城市群和加强珠三角、成渝和长江中游等重点城市群臭氧污染防治工作,强化天津、石家庄、南京、杭州、济南、郑州、太原等臭氧污染严重城市臭氧污染防治工作。

Abstract: Ozone pollution prevention and control is one of the three landmark battles of China's "14th Five-Year Plan" period to carry out in-depth pollution prevention and control actions. This study selected the maximum 8h monitoring value of near-surface O3 from 2015 to 2021, explored the temporal and spatial variation characteristics of near-surface O3 concentration in national, provincial, urban agglomerations and key cities, and discussed the effectiveness of ozone pollution control in China since the "13th Five-Year Plan" period. The results showed that: ①Since the "Thirteenth Five-Year Plan" period, the annual value of O3 concentration near the surface in China had first increased and then decreased. In 2021, the concentrationdecreased by about 8.2%, compared to the value in 2019, implying that the growing trend was curbed. The high value was mainly concentrated in spring, summer and early autumn from May to September.②The spatial distribution of O3 concentration near the surface in China showed a pattern of "high in the east and low in the west" bounded by the Hu-Huanyong line. The medium and high-value areas were mainly concentrated in North China and spread to central China and coastal cities. ③The concentration of O3 near the surface of urban agglomerations showed the characteristics of "contiguous" distribution. The concentration of O3 in the eastern urban agglomeration was higher than that in the western urban agglomeration. The concentration of O3 in urban agglomerations in North and East China, such as the Beijing-Tianjin-Hebei urban agglomeration, the Yangtze River Delta urban agglomeration and the Central Plains urban agglomeration, was relatively high.④During the "13th Five-Year Plan" period, the ozone pollution of the upgrading urban agglomerations was significantly improved. The O3 concentration in the five major urban agglomerations of Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta, Chengdu-Chongqing and Yangtze River Midstream decreased by 15.51%, 6.35%, 11.66%, 5.26% and 12.56% respectively for 2019 to 2021; The effect of pollution control in central cities was also remarkable; The O3 concentration in the northern developing urban agglomerations was high, while the O3 concentration in the other two developing urban agglomerations in the southern coastal area was relatively low. The collaborative emission reduction efforts between cities within developing urban agglomerations needs to be strengthened. The concentration of O3 in fostering urban agglomerations was relatively acceptable. There were large differences in O3 concentration in central cities, and the concentration of O3 in key cities such as Taiyuan, Harbin, Yinchuan and Urumqi showed an upward trend. This study suggested that China's ozone pollution prevention and control battle focus on the spring, summer and early autumn from May to September. Regions of the Beijing-Tianjin-Hebei, Yangtze River Delta and Guanzhong Plain urban agglomerations should be paid more attentions. The prevention and control of ozone pollution in key urban agglomerations (such as the Pearl River Delta, Chengdu-Chongqing and the middle reaches of the Yangtze River)and the cities with severe ozone pollution (such as Tianjin, Shijiazhuang, Nanjing, Hangzhou, Jinan, Zhengzhou and Taiyuan) shouldbestrengthened further.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴殿鸣, 邵大伟. 基于最佳尺度的城市扩张特征研究——以苏州中心城区为例[J]. 长江流域资源与环境, 2018, 27(09): 1937 -1946 .
[2] 阮甜 查芊郁 杨茹 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, , (): 0 .
[3] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[4] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[5] 黄玥, 黄志霖, 肖文发, 曾立雄, 马良. 基于Mann-Kendall法的三峡库区长江干流入出库断面水质变化趋势分析[J]. 长江流域资源与环境, 2019, 28(04): 950 -961 .
[6] 葛云健, 吴笑涵. 江苏历史时期洪涝灾害时空分布特征[J]. 长江流域资源与环境, 2019, 28(08): 1998 -2007 .
[7] 孔锋, 薛澜, . 1961~2017年中国不同长历时暴雨与总降雨事件的空间分异特征对比研究[J]. 长江流域资源与环境, 2019, 28(09): 2262 -2277 .
[8] 刘海旭, 余 斌, 张加磊, 周子康. 长江经济带城市人居环境空间格局研究[J]. 长江流域资源与环境, 2019, 28(12): 2795 -2805 .
[9] 任世鑫, 李二玲, 邓晴晴, 崔之珍. 中国三大粮食作物化肥施用特征及环境风险评价[J]. 长江流域资源与环境, 2019, 28(12): 2936 -2947 .
[10] 宋 欣, 孙 伟, 王 磊. 长三角高铁网络时空演化格局及区域经济影响测度研究[J]. 长江流域资源与环境, 2020, 29(2): 296 -309 .