长江流域资源与环境 >> 2023, Vol. 32 >> Issue (4): 783-796.doi: 10.11870/cjlyzyyhj202304010

• 自然资源 • 上一篇    下一篇

拉萨裂腹鱼在藏木和加查鱼道基于基因交流的过坝需求及其受到的遗传选择

董微微1,杨佐斌2,谢意军3,乔晔1,邵科1,熊美华1,汪鄂洲1,余丹1,朱滨1* 
  

  1. (1. 水利部中国科学院水工程生态研究所,水利部水工程生态效应与生态修复重点实验室,湖北省水生态保护与修复工程技术研究中心,湖北 武汉 430079;2. 华能西藏雅鲁藏布江水电开发投资有限公司,四川 成都 610093;3. 乐山中电建生态环保科技有限公司,四川 乐山 614099)
  • 出版日期:2023-04-20 发布日期:2023-04-27

Need of Assisted Gene Flow and Genetic Selectivity of Zangmu Fishway and Jiacha Fishway on Schizothorax waltoni

DONG Wei-wei1, YANG Zuo-bin2, XIE Yi-jun 3, QIAO Ye1, SHAO Ke 1,  XIONG Mei-hua1, WANG E-zhou1, YU Dan1, ZHU Bin1    

  1. (1. Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences,Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem,Ministry of Water Resources, Hubei Engineering Research Center of Hydroecology Protection and Restoration, Wuhan 430079, China;2. Yarlung Zangbo River Hydropower Development and Investment Co., Ltd., Chengdu 610093, China;3. Power China Leshan Ecological Environmental Protection Technology Co., Ltd., Leshan 614099, China)

  • Online:2023-04-20 Published:2023-04-27

摘要: 为了解拉萨裂腹鱼(Schizothorax waltoni)在藏木和加查鱼道基于基因交流的过坝需求及其受到的遗传选择,采用线粒体Cyt b基因序列分析来自藏木水电站坝址上游(ZMBS)、藏木鱼道(ZMYD)、藏木水电站坝址下游(ZMBX)、加查鱼道(JCYD)和加查水电站坝址下游(JCBX)5个群体共220尾拉萨裂腹鱼的遗传多样性及遗传结构。结果表明:(1)藏木水电站和加查水电站坝址上游与下游拉萨裂腹鱼群体(ZMBS、ZMBX和JCBX)遗传多样性水平相近(Hd (ZMBS)=0.868,Pi (ZMBS)= 0.004 16;Hd (ZMBX)=0.825, Pi (ZMBX)=0.003 88; Hd (JCBX)=0.833, Pi (JCBX)=0.003 70),两两群体间基因交流频繁(25.23<|Nm|<81.33),未发生遗传分化(-0.020 2<FST<0.006 1;P>0.05),远交风险较低,具有基于基因交流的过坝需求,应被列为过鱼对象;(2)Network网络结构图和系统发育树结果显示拉萨裂腹鱼分化成3个Clade,存在同域分化现象,但未达到种的分化水平,可能是因为经历“昆仑-黄河运动”或更新世冰期避难所后的二次接触而形成;(3)单倍型和Clade的分布频率结果显示藏木鱼道和加查鱼道对拉萨裂腹鱼不同单倍型和不同Clade存在遗传选择压力。研究可为复核过鱼对象选择的合理性和鱼道精细化运行管理提供数据支撑和参考依据。

Abstract: Fishway is an important channel for migration and gene exchange of fish populations between upstream and downstream of dam. In this study, we sequenced 220 Cyt b gene sequences of Schizothorax waltoni, and analyzed the genetic diversity and genetic structure from five populations, including upstream of Zangmu Hydropower Station (ZMBS), Zangmu fishway (ZMYD), downstream of Zangmu Hydropower Station (ZMBX), Jiacha fishway (JCYD) and downstream of Jiacha Hydropower Station (JCBX). Our aims were to study the need for assisted gene flow to prevent further loss of genetic diversity and boost adaptive potential and genetic selectivity of fishways on S. waltoni. The results show that: (1) The level of genetic diversity for S. waltoni populations between upstream and downstream of Zangmu Hydropower Station and Jiacha hydropower station (ZMBS, ZMBX and JCBX) were similar (Hd (ZMBS)=0.868, Pi (ZMBS)= 0.004 16; Hd (ZMBX)=0.825, Pi (ZMBX)=0.003 88; Hd (JCBX)=0.833, Pi (JCBX)=0.003 70), gene flow was not blocked (25.23<|Nm|<81.33), genetic divergence was not detected (-0.020 2<FST<0.006 1;P>0.05), indicated low risk of outbreeding depression. Five geographic populations were defined as one genetic management unit. There exists the demand of gene flow to pass through Zangmu fishway and Jiacha fishway for S. waltoni to avoid inbreeding depression. S. waltoni should be a target fish for Zangmu fishway and Jiacha fishway; (2) The results of network and neighbor-joining phylogenetic tree showed three Clades of S. waltoni, indicated sympatric divergence but not cryptic species, which may be formed by the secondary contact after the Kunlun-Yellow River Movement or the Pleistocene glacial refugia. (3) Genetic selection pressure was detected on S. waltoni from Zangmu fishway and Jiacha fishway. The results could provide data support and theoretical implications for rechecking the rationality of target fish setting and promoting the refinement operation management of fishway.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 洪佳,王振钟,王丽丽,袁刚. 金华江流域利用硅藻生物学特性监测水质研究[J]. 长江流域资源与环境, 2014, 23(09): 1285 .
[2] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[3] 熊鸿斌, 周凌燕. 基于PSR-灰靶模型的巢湖环湖防洪治理工程生态环境影响评价研究[J]. 长江流域资源与环境, 2018, 27(09): 1977 -1987 .
[4] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[5] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[6] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[7] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568 -2577 .
[8] 王海力, 韩光中, 谢贤健. 基于DEA模型的西南地区耕地利用效率时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 2784 -2795 .
[9] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[10] 赵树成, 张展羽, 夏继红, 杨洁, 盛丽婷, 唐丹, 陈晓安, . 鄱阳湖滨岸土壤磷素吸附特征研究[J]. 长江流域资源与环境, 2019, 28(01): 166 -174 .