长江流域资源与环境 >> 2023, Vol. 32 >> Issue (8): 1594-1607.doi: 10.11870/cjlyzyyhj202308004

• 区域可持续发展 • 上一篇    下一篇

城市关联网络空间特征及结构机理——基于不同时段铁路出行视角的研究

梁朋朋1,崔  叙1*,喻冰洁1,杨林川1,梁  源2   

  1. (1.西南交通大学建筑学院,四川 成都 611756;2.香港浸会大学地理系,中国 香港 999077)
  • 出版日期:2023-08-20 发布日期:2023-08-23

Spatial Characteristics and Structural Mechanism of Urban Network:Based on Railway Travel in Different Periods

LIANG Peng-peng1, CUI Xu1, YU Bing-jie1, YANG Lin-chuan1, LIANG Yuan2   

  1. (1.School of Architecture, Southwest Jiaotong University, Chengdu 611756, China;2.Department of Geography, Hong Kong Baptist University, Hongkong 999077, China)
  • Online:2023-08-20 Published:2023-08-23

摘要: 在城市高质量发展和新时代国土空间规划的背景下,准确掌握城市关联网络特征及结构机理对城市规划、交通规划编制有重要意义。从不同时段的铁路出行视角,构建城市间流入流出数据矩阵,刻画工作日、周末、节假日的城市关联网络格局,解析不同空间尺度结构特征及组织模式。结果表明:(1)铁路出行关联密切的城市主要集中在胡焕庸线以东,与中国的经济发达和人口聚集地区相耦合;(2)节假日的铁路出行人口流动强度明显高于其他时段,工作日的平均出行距离最长,整个网络趋向于扁平化和均衡化;(3)从工作日、周末到节假日中心度呈现递减趋势;(4)铁路出行人口流动网络层级明显;(5)工作日、周末和节假日依次形成跨区域城市组合型、高铁走廊型和城市群型形态结构。研究通过分析路径依赖关联、优势节点链接、不同尺度空间交互机制,探明了城市关联网络空间结构形成机理,提出了全域轨道融合、关键节点提升、嵌套空间衔接等优化建议。

Abstract: Under the background of high-quality urban development and territorial planning in the new era, we need to accurately grasp the characteristics and structural mechanism of urban network. It is of great importance  for urban planning and transportation planning. This paper constructs the urban data matrix from the perspective of railway travels in different periods. The matrix depicts the pattern of urban networks on weekdays, weekends and holidays, and shows the structural characteristics and organizational patterns of different spatial scales. The results show that: cities that are closely related to railway travels are mainly concentrated in the east of the Hu Line, which is coupled with China’s high economically developed and heavily populated areas; The migration intensity of railway travels in holidays is significantly higher than that in other periods; The average travel distance on weekdays is the longest, and the whole network tends to be flat and balanced; The centrality shows a decreasing trend from weekdays, weekends to holidays; The level of railway travel population flow network is apparent. Working days, weekends and holidays form cross-regional urban agglomerations, high-speed rail corridors and urban agglomerations. Through the analysis of path dependence association, advantageous node linkage, and spatial structure interaction at different scales, this paper explores the formation mechanism of the spatial structure of urban network, supporting suggestions on global orbit fusion, key node lifting, and nested space connection.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[2] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[3] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .
[4] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[5] 刘雁慧 李阳兵. 中国水资源承载力评价及变化研究[J]. 长江流域资源与环境, , (): 0 .
[6] 孔锋. 基于不同等级降雨视角透视气候工程对中国降雨结构的影响[J]. 长江流域资源与环境, , (): 0 .
[7] 刘晓阳 黄晓东 丁志伟. 长江经济带县域信息化水平的空间差异研究[J]. 长江流域资源与环境, , (): 0 .
[8] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[9] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[10] 秦欢欢 孙占学 高柏. 农业节水和南水北调对华北平原可持续水管理的影响[J]. 长江流域资源与环境, , (): 0 .