长江流域资源与环境 >> 2023, Vol. 32 >> Issue (8): 1641-1652.doi: 10.11870/cjlyzyyhj202308008

• 自然资源 • 上一篇    下一篇

长江感潮河道形态变化的遥感分析

马慧晨,郭磊城*,吴增斌,彭  忠   

  1. (华东师范大学河口海岸学国家重点实验室,上海 200241)
  • 出版日期:2023-08-20 发布日期:2023-08-23

A Remote Sensing Analysis of Riverbed Channel Changes in Tidal Yangtze River Section

MA Hui-chen , GUO Lei-cheng , WU Zeng-bin , PENG Zhong   

  1. (State Key Lab. of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China)
  • Online:2023-08-20 Published:2023-08-23

摘要: 感潮河流是以单向水流为主、同时受到潮波影响的陆海过渡河段。以长江为例,感潮河段包括大通到江阴近500 km区间。以往对感潮河段地形演变研究主要基于海图水深的冲淤分析,较少考虑河道平面形态的变化。基于1989~2021年间的遥感影像,分析了长江大通-徐六泾河段的平面形态及时空演变特征,定量计算了岸线及河道面积的变化。研究表明近30年来长江感潮河段岸线长度整体增加约4.5 km,江心洲滩面积净增加约96 km2。河道区间内大型江心洲呈现淤涨态势,中小型江心洲数量和面积减少。河道左右岸线的演变各具特点,河道左岸沿程变幅较大,以年均4.10 m/a向河道淤涨,河道右岸演变呈现明显的时空分布。人类活动(如围垦和筑堤)以及流域水沙变化是该河段河道形态演变的主控因素。研究结果可为长江的航道整治和河道管理提供参考。

Abstract: Tidal river is a land-ocean transitional section with unidirectional water flow and is subject to tidal wave influence. For example, the ~500 km long section between Datong and Jiangyin is regarded as a tidal river in the Yangtze River. Previous studies mainly focused on bathymetric changes based on the scour and sedimentation analysis of the water depth of the chart, while the geometric changes are less reported. Based on remote sensing images for 1989 to 2021, we analyze spatial-temporal changes of the channel geometry for the Datong-Xulujing reaches and quantify changes in the shoreline and channel area. Results show that the length of shorelines increased by ~4.5 km, and area of the islands and sand bars increased by ~96 km2 in the past 30 years. Large islands and sand bars sustain growth while the medium to small-sized islands and bars receded in both number and area. The evolution of the left and right shorelines of the river channel shows their  own characteristics. The left shoreline demonstrates an expansion to the river channel at an average annual rate of 4.10 m/a. The evolution of the right shoreline shows an apparent temporal and spatial distribution. Human activities in terms of reclamation and diking and reduction in sediment load are the main controlling factors of these changes. The outcomes can provide reference for the waterway regulation and river management of the Yangtze River.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[4] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496 -2504 .
[5] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[6] 黄晓慧, 王礼力, 陆迁. 资本禀赋对农户水土保持技术价值认知的影响——以黄土高原区为例[J]. 长江流域资源与环境, 2019, 28(01): 222 -230 .
[7] 郭贯成, 彭紫新, 周志伟. 工业企业类型对工业用地利用效率的影响研究——基于企业类型宏观视角的分类 [J]. 长江流域资源与环境, 2019, 28(02): 241 -249 .
[8] 杨 斌, 王占岐, 姚小薇, 张利国. 鄂西北山区土地利用的地形梯度效应与空间结构特征[J]. 长江流域资源与环境, 2019, 28(02): 313 -321 .
[9] 胡慧芝, 王建力, 王 勇, 龙晓泳. 1990~2015年长江流域县域粮食生产与粮食安全时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2019, 28(02): 359 -367 .
[10] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .