长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 816-823.doi: 10.11870/cjlyzyyhj201505014

• 生态环境 • 上一篇    下一篇

崇明滩涂湿地不同盐度梯度下芦苇种群及土壤的生态化学计量学特征

韩华1,2, 王昊彬1,2, 余华光1,2, 谭渝峰1,2, 由文辉1,2   

  1. 1. 华东师范大学环境科学系, 上海 200241;
    2. 上海市城市化生态过程与生态恢复重点实验室, 上海 200241
  • 收稿日期:2014-03-12 修回日期:2014-09-06 出版日期:2015-05-20
  • 作者简介:韩华(1988~),女,硕士研究生,主要从事湿地生态学研究.E-mail:hanhua_1127@126.com
  • 基金资助:
    上海市生态环境调查与评估项目(ZX31942)

ECOLOGICAL STOICHIOMETRY OF CARBON, NITROGEN AND PHOSPHORUS OF PHRAGMITES AUSTRALIS POPULATION UNDER SOIL SALINITY GRADIENTS IN CHONGMING WETLANDS

HAN Hua1,2, WANG Hao-bin1,2, YU Hua-guang1,2, TAN Yu-feng1,2, YOU Wen-hui1,2   

  1. 1. Department of Environment of Science, East China Normal University, Shanghai 200241, China;
    2. Shanghai Key Laboratory of Urbanization and Ecological Restoration, shanghai 200241, China
  • Received:2014-03-12 Revised:2014-09-06 Online:2015-05-20
  • Contact: 由文辉 E-mail:youwenhui1964@126.com

摘要: 为了研究不同盐度梯度下芦苇(Phragmites australis)的生态适应性及其生长的限制因子, 对崇明盐度梯度下的3个滩涂湿地生长的芦苇及土壤生态化学计量学指标进行测定;分析不同盐度下芦苇种群的生态化学计量学之间的差异, 及土壤与芦苇元素、元素比之间的相关性。结果表明:(1)崇明滩涂湿地土壤C、N、P含量和C/N、C/P、N/P平均值分别是15.01、0.69、0.86 g/kg, 22.09、21.87、0.96。芦苇的C、N、P含量及C/N、C/P、N/P平均值分别为413.17、10.75、2.53g/kg, 41.49、293.58、7.29。(2)随着崇明滩涂湿地土壤盐度增加, 土壤的C、N含量及芦苇的C含量、C/N先降低后增加;土壤的C/N、C/P、N/P及植物的C/P、N/P增加;土壤的P含量及植物N、P含量降低。(3)盐度梯度下滩涂湿地土壤与芦苇生态化学计量学中的C、P、C/P、N/P之间均正相关关系, 土壤N含量与植物的C/P正相关, 与N/P负相关;而C/N与植物P含量之间有负相关性。(4)该研究区土壤的C、N元素较为匮乏, P含量较高;植物的N/P值小于14, 说明崇明芦苇生长主要受到N的限制。

关键词: 滩涂湿地, 盐度梯度, 芦苇, 生态化学计量学

Abstract: Chongming Island is a typical estuary alluvial island, seawater is upstream to the island, resulting that the soil salinity and moisture are different. It is unknown whether Phragmites australis population that are widely distributed in the Chongming Island is different across habitats, as affected by soil salinity. This research is to answer this question and to study the ecological Stoichiometry of P. australis and soil under the soil salinity gradient. We assume that the ecological stoichiometry of P. australis and soil will change under the soil salinity gradient. The object are P. australis and soil in the Chongming Island. The concentrations of carbon, nitrogen, phosphorus and the stoichiometry of them for P. australis and soil in three wetlands with different soil salinities were measured, to clarify the ecological adaptability of P. australis and its limiting factors in the Chongming Island. The results showed: 1) the average concentrations of soil carbon, nitrogen, phosphorus and ratio are 15.01, 0.69, 0.86 g/kg; 22.09, 21.87, 0.96. The average concentrations of P. australis carbon, nitrogen, phosphorus and ratios are 413.17, 10.75, 2.53 g/kg; 41.49, 293.58, 7.29. 2) With increasing soil salinity, the concentrations of soil carbon, nitrogen increased after the first reduced, they were maximum under the highest soil salinities, but the concentrations of soil phosphorus are minimum under the lowest soil salinities. The stoichiometry ratio of soil showed a steady increase. The concentrations of plant carbon and phosphorus were maximum under the lowest soil salinities, suggesting that plants nutrient absorption were effected by soil salinities. The C/P, N/P of plants were increasing with increasing soil salinity, which indicated P. australis would adapt the higher soil salinities and increase the nutrition use efficiency when it grow under higher soil salinities. The concentrations of plant nitrogen were continuously reduced with increasing soil salinity. 3) The concentrations of soil carbon, phosphorus had positive correlations with thoseof plants phosphorus, C/P, N/P ratios, while the concentration of soil nitrogen had positive correlations with C/P, negative correlations with N/P ratios of plants; the C/N in the soil only had negative correlations with phosphorus concentrations of plants. 4) The soil carbon, nitrogen elements was poor, but the phosphorus were abundant; the average N/P ratio were lower than 14, which indicate the P. australis growth were limited primarily by nitrogen.

Key words: wetland, the gradients of soil salinity, Phragmites australis, the carbon, nitrogen and phosphorus ecological stoichiometry

中图分类号: 

  • P951
[1] STERNER R W, ELSER J J.Ecological stoichiometry:The biology of elements from molecules to the biosphere[M].Princeton University Press, 2002.
[2] WU T G, YU M K, WANG G G, et al.Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China[J].Biochemical Systematics and Ecology, 2012, 44(12):255-263.
[3] LI L P, STEFAN Z, HAN W, et al.Nitrogen and phosphorus stoichiometry of common reed(Phragmites australis) and its relationship to nutrient availability in northern China[J].Aquatic Botany, 2014, 112(11):84-90.
[4] DIJKSTRA F A, PENDALL E, MORGAN J A, et al.Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland[J].New Phytologist, 2012, 196(3):807-815.
[5] LEITNER S, WANEK W, WILD B, et al.Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech(Fagus sylvatica) litter[J].Soil Biology & Biochemistry, 2012, 50(7):174-187.
[6] GRIFFITHS B S, SPILLES A, BONKOWSKI M.C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess[J].Ecological Processes, 2012, 1(6):1-11.
[7] 彭佩钦, 张文菊, 童成立, 等.洞庭湖湿地土壤碳、氮、磷及其土壤物理性状的关系[J].应用生态学报, 2005, 16(10):1872-1878.
[8] 王晶苑, 王绍强, 李纫兰, 等.中国四种森林类型主要优势植物的C:N:P化学计量学特征[J].植物生态学报, 2011, 35(6):587-595.
[9] 王维奇, 曾从盛, 钟春棋, 等.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学, 2010, 31(10):2411-2416.
[10] 王维奇, 徐玲琳, 曾从盛, 等.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量学特征[J].生态学报, 2011, 31(23):7119-7124.
[11] 杨永兴, 刘长娥, 杨杨, 等.长江河口九段沙海三棱藨草湿地生态系统N、P、K的循环特征[J].生态学杂志, 2009, 28(10):1977-1985.
[12] 王纯, 王维奇, 曾从盛, 等.闽江河口区盐-淡水梯度下湿地土壤氮形态及储量特征[J].水土保持学报, 2011, 25(5):147-153.
[13] 欧维新, 杨桂山, 高建华, 等.盐城潮滩湿地对N、P营养物质的截留效应研究[J].湿地科学, 2006, 4(3):180-188.
[14] 王维奇, 王纯, 仝川, 等.闽江河口区盐-淡水梯度下芦苇沼泽土壤有机碳特征[J].湿地科学, 2012, 10(2):164-169.
[15] 李品芳, 侯振安, 龚元石, 等.NaCl胁迫对苜蓿和羊草苗期生长及养分吸收的影响[J].植物营养与肥料学报, 2001, 7(2):211-217.
[16] 徐宏发, 赵云龙.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社, 2005.
[17] 鲍士旦.土壤农化分析[M].北京:农业出版社, 1988:29-125.
[18] 仝川, 贾瑞霞, 王维奇, 等.闽江口潮汐盐沼湿地土壤碳氮磷的空间变化[J].地理研究, 2010, 29(7):1203-1213.
[19] 李彦, 张英鹏, 孙明, 等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报, 2008, 24(1):258-265.
[20] 吕晓霞, 翟世奎, 于增慧, 等.长江口内外表层沉积物中营养元素的分布特征研究[J].海洋通报, 2005, 24(2):40-45.
[21] MANZONI S, TROFYMOW J A, JACKSON R B, et al.Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J].Ecological Monofraphs, 2010, 80:89-106.
[22] TIAN H, CHEN G, ZHANG C, et al.Pattern and variation of C:N:P ratios in China's soils:a synthesis of observational data[J].Biogeochemistry, 2010, 98(3):139-151.
[23] 王素平, 郭世荣.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报, 2006, 17(10):1883-1888.
[24] 张爽, 郭成久, 苏芳莉, 等.不同盐度水灌溉对芦苇生长的影响[J].沈阳农业大学学报, 2008, 39(1):65-68.
[25] 黄建军, 王希华.浙江天童32种常绿阔叶树叶片的营养及结构特征[J].华东师范大学学报, 2003, 1(3):92-97.
[26] JOBBÁGY E G, JACKSON R B.The vertical distribution of soil organic carbon and its relation to climate and vertation[J].Ecological applications, 2000, 10(2):423-436.
[27] 高亚军, 朱培立, 稻麦轮作条件下长期不同土壤管理对有机质和全氮的影响[J].土壤与环境, 2000, 9(1):27-30.
[28] 宋云, 李德志, 李红, 等.崇明三岛土壤有机质和全氮的空间分布特征及影响因素分析[J].河南农业大学学报, 2009, 43(2):204-209.
[29] 王维奇, 王纯, 刘百贵, 等.盐度对湿地枯落物分解过程中碳氮磷化学计量比的影响[J].中国环境科学, 2012, 32(9):1683-1687.
[30] 程滨, 赵永军, 张文广, 等.生态化学计量学研究进展[J].生态学报, 2010, 30(6):1628-1637.
[31] 王俊, 李凤民, 贾宇, 等.半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化[J].应用生态学报, 2005, 16(3):439-444.
[32] ELSER J J, STERNER R W, GOROKHOVA E, et al.Biological stoichiometry from genes to ecosystems.Ecology Letters[J], 2000, 3(6):540-550.
[33] 郑淑霞, 上官周平.黄土高原地区植物叶片养分组成的空间分布格局[J].自然科学进展, 2006, 16(8):965-973.
[34] 任书杰, 于贵瑞, 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学, 2007, 28(12):2665-2673.
[35] 刘存歧, 李昂, 李博, 等.白洋淀湿地芦苇生物量及氮、磷储量动态特征[J].环境科学学报, 2012, 32(6):1503-1511.
[36] 林小涛, 梁海含.澳门路氹湿地芦苇氮磷含量的季节变化[J].生态学杂志, 2007, 26(1):5-8.
[37] GVSEWELL S.N:P ratios in terrestrial plants:variation and functional significance[J].New Phytologist, 2004, 164:243-266.
[38] KOERSELMAN W, MEULEMAN A F M.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology, 1996, 33(6):1441-1450.
[38] 赵美霞, 李德志, 潘宇, 等.崇明东滩湿地芦苇和互花米草N、P利用策略的生态化学计量学分析[J].广西植物, 2012, 32(6):715-722.
[39] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al.Organism Size, Life History, and N:P Stoichiometry[J].BioScience, 1996, 46(9):674-684.
[40] 曹建华, 李小波, 赵春梅, 等.森林生态系统养分循环研究进展[J].热带农业科学, 2007, 27(6):68-79.
[1] 石冰, 马金妍, 王开运, 巩晋楠, 张超, 刘为华. 崇明东滩围垦芦苇生长、繁殖和生物量分配对大气温度升高的响应[J]. 长江流域资源与环境, 2010, 19(04): 383-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 张 强.
近40年来长江流域水沙变化趋势及可能影响因素探讨
[J]. 长江流域资源与环境, 2008, 17(2): 257 .
[3] 袁旭音. 污染河道的常量和微量元素特征及指示意义[J]. 长江流域资源与环境, 2008, 17(2): 270 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 张其成,姚亦锋,蒋成煜. 南京城市滨江带功能演变及现代景观规划研究[J]. 长江流域资源与环境, 2004, 13(1): 30 -34 .
[7] 胡鸿兴,康洪莉,贡国鸿,朱觅辉5,郑文勤5,吴法清,何定富,李振文,耿 栋5. 湖北省湿地冬季水鸟多样性研究[J]. 长江流域资源与环境, 2005, 14(4): 422 -428 .
[8] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[9] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[10] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .