长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 860-867.doi: 10.11870/cjlyzyyhj201505020
吕明权, 吴胜军, 温兆飞, 陈吉龙, 姜毅, 甘捷
LV Ming-quan, WU Sheng-jun, WEN Zhao-fei, CHEN Ji-long, JIANG Yi, GAN Jie
摘要: 传统土壤侵蚀模型模拟次降雨产沙时难以确定泥沙输移系数, 分布式的侵蚀产沙模型对数据量需求量大。选择三峡库区宋家沟小流域为研究对象, 基于2013年的降雨、植被盖度、地形、土壤等数据, 利用SCS-CN和MUSLE模型耦合模拟流域的场降雨的产沙量。结果表明:该模型的模拟值的精确度在可接受范围内, 整个流域2013年的泥沙流失量是3 923 t, 全年中5场较大的降雨贡献了泥沙流失量的80%以上;不同土地利用类型的泥沙输出量差异很大, 耕地(面积44.63%)贡献了81.54%的泥沙, 有林地(面积47.61%)贡献了17.63%的泥沙;坡度在0~8度的区域贡献的产沙量仅为1.75%, 大于25度的区域占流域面积的比例是39.21%, 产沙量占55.77%;泥沙模拟值相比实测值偏大, 其原因可能是流域中分布的池塘改变了径流过程, 发挥拦截泥沙功能。
中图分类号:
[1] 龙天渝, 乔敦, 安强, 等.基于GIS和RUSLE的三峡库区土壤侵蚀量估算分析[J].灌溉排水学报, 2012, 31(2):33-37. [2] 谌芸, 何丙辉, 赵秀兰, 等.小江流域农地水土流失对水体富营养化的影响[J].水土保持学报, 2010, 24(4):31-34. [3] 高扬, 朱波, 王玉宽, 等.自然和人工模拟降雨条件下紫色土坡地的磷素迁移[J].水土保持学报, 2006, 20(5):34-37. [4] 蒋锐, 朱波, 唐家良, 等.紫色丘陵区典型小流域暴雨径流氮磷迁移过程与通量[J].水利学报, 2009, 40(6):659-666. [5] 王超, 赵培, 高美荣, 等.紫色土丘陵区典型生态-水文单元径流与氮磷输移特征[J].水利学报, 2013, 44(6):748-754. [6] XU D, DING S M, SUN Q, et al.Evaluation of in situ capping with clean soils to control phosphate release from sediments[J].Science of the Total Environment 2012, 438:334-341. [7] AKSOY H, LEVENT KAVVAS M.A review of hillslope and watershed scale erosion and sediment transport models[J].Catena, 2005, 64:247-271. [8] RANZI R, LE T H, RULLI M C.A RUSLE approach to model suspended sediment load in the Lo river(Vietnam):Effects of reservoirs and land use changes[J].Journal of Hydrology, 2012, 422-423:17-29. [9] ZHOU P, LUUKKANEN O, TOKOLA T, et al.Effect of vegetation cover on soil erosion in a mountainous watershed[J].Catena, 2008, 75:319-325. [10] BORRELLI P, MÄRKER M, PANAGOS P.Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy[J].Catena, 2014, 114:45-58. [11] CHO J, MOSTAGHIMI S.Dynamic agricultural non-point source assessment tool(DANSAT):Model development[J].Biosystems engineering, 2009, 102:486-499. [12] 刘瑞娟, 张万昌.基于动态产流机制的分布式土壤侵蚀模型研究[J].水土保持通报, 2010, 30(6):139-144. [13] WU Y P, CHEN J.Modeling of soil erosion and sediment transport in the East River Basin in southern China[J].Science of the Total Environment, 2012, 441:159-168. [14] GLAVAN M, MILICIC V, PINTAR M.Finding options to improve catchment water quality-Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia[J].Ecological Modelling 2013, 261-262:58-73. [15] SADEGHI S H R, GHOLAMI L, DARVISHAN A K, et al.A review of the application of the MUSLE model worldwide[J].Hydrological Sciences Journal, 2014, 59(2):1-11. [16] WILLIAMS J R, BERNDT H D.Sediment yield prediction based on watershed hydrology[J].Transactions of the American Society of Agricultural and Biological Engineers, 1977, 20(6):1100-1104. [17] WILLIAMS J R.Sediment-yield prediction with Universal Equation using runoff energy factor, present and prospective technology for predicting sediment yield and sources.ARS-S-40[Z].Brooksville, FL:US Department of Agriculture, Agricultural Research Service, 1975:244-252. [18] USDA-NRCS.Estimation of Direct Runoff from Storm Rainfall, National Engineering Handbook, Part 630 Hydrology[Z].United States Department of Agriculture-Natural Resources Conservation Service, Washington, DC(Chapter 10), 2004 [19] SHI Z, CHEN L, FANGA N, et al.Research on the SCS-CN Initial Abstraction Ratio Using Rainfall-Runoff Event Analysis in the Three Gorges Area, China[J].Catena, 2009, 352(1):1-7 [20] USDA-NRCS.Estimation of Direct Runoff from Storm Rainfall, National Engineering Handbook, Part 630 Hydrology[Z].United States Department of Agriculture-Natural Resources Conservation Service, Washington, DC(Chapter 16), 2004. [21] WILLIAMS J R, JONES C A, DYKE P T.A modeling approach to determining the relationship between erosion and productivity[J].Transactions of the ASAE, 1984, 27(1):129-144. [22] MCCOOL D K, FOSTER G R, WEESIES G A.Slope Length and Steepness Factors(LS)[Z].United States Department of Agriculture, Agricultural Research Service(USDA-ARS)Handbook 703, 1997. [23] ZHANG H M, YANG Q K, LI R, et al.Extension of a GIS procedure for calculating the RUSLE equation LS factor[J].Computers & Geosciences, 2013, 52:177-188. [24] 蔡崇法, 丁树文, 史志华, 等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报, 2000, 14(2):19-24. [25] 马超飞, 马建文, 布和敖斯尔, 等.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报, 2001, 21(4):6-9. [26] SHI Z H, AI L, FANG N F, et al.Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery:A case study in the Three Gorges Area, China[J].Journal of Hydrology, 2012, 438-439:156-167. [27] NASH J E, SUTCLIFFE J V.Riverflow forecasting through conceptual models Part 1-A discussion of principles[J].Journal of Hydrology, 1970, 10:282-29. [28] VERSTRAETEN G, POESEN J.Estimating trap efficiency of small reservoirs and ponds:Methods and implications for the assessment of sediment yield[J].Progress in Physical Geography, 2000, 24(2):219-251. [29] SMITH S V, RENWICK W H, BARTLEY J D, et al.Distribution and significance of small, artificial water bodies across the United States landscape[J].The Science of the Total Environment, 2002, 299:21-36. [30] FIENER P, AUERSWALD K, WEIGAND S.Managing erosion and water quality in agricultural watersheds by small detention ponds[J].Agriculture, Ecosystems and Environment, 2005, 110:132-142. [31] 贺秀斌, 张信宝, WALLING D E.基于湖库沉积剖面137Cs变化的流域表层侵蚀速率计算模型[J].自然科学进展, 2005, 15(4):495-498. [32] 齐永青, 张信宝, 贺秀斌, 等.川中丘陵区和三峡地区小流域侵蚀产沙的塘库沉积137Cs断代[J].地理研究, 2006, 25(4):641-648. |
[1] | 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618. |
[2] | 黄亚男, 纪道斌, 龙良红, 刘德富, 宋林旭, 苏青青. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(03): 461-470. |
[3] | 应弘, 李阳兵. 三峡库区腹地草堂溪小流域土地功能格局变化[J]. 长江流域资源与环境, 2017, 26(02): 227-237. |
[4] | 祖波, 周领, 李国权, 刘波. 三峡库区重庆段某排污口下游污染物降解研究[J]. 长江流域资源与环境, 2017, 26(01): 134-141. |
[5] | 刘均卫, 刘涛. 三峡库区支流常年库区航道通航尺度研究[J]. 长江流域资源与环境, 2016, 25(11): 1711-1719. |
[6] | 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942. |
[7] | 王晓荣, 程瑞梅, 肖文发, 潘磊, 曾立雄. 三峡库区消落带水淹初期主要优势草本植物生态位变化特征[J]. 长江流域资源与环境, 2016, 25(03): 404-411. |
[8] | 杨杉, 吴胜军, 周文佐, 吕明权, 张德微, 黄平. 三峡库区典型土壤酸碱缓冲性能及其影响因素研究[J]. 长江流域资源与环境, 2016, 25(01): 163-170. |
[9] | 王林, 陈正洪, 代娟, 汤阳. 气象因子与地理因子对长江三峡库区雾的影响[J]. 长江流域资源与环境, 2015, 24(10): 1799-1804. |
[10] | 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350. |
[11] | 施鹏程, 彭道黎, 黄国胜, 王雪军, 曾伟生, 马炜, 叶林妹. 三峡库区乔木林生物量和碳储量的估算[J]. 长江流域资源与环境, 2015, 24(06): 1052-1059. |
[12] | 刘晓冉, 杨茜, 程炳岩, 张天宇. 三峡库区21世纪气候变化的情景预估分析[J]. 长江流域资源与环境, 2010, 19(01): 42-. |
[13] | 王丽婧, 郑丙辉, 李子成. 三峡库区及上游流域面源污染特征与防治策略[J]. 长江流域资源与环境, 2009, 18(8): 783-. |
[14] | 王鹏程, 姚, 婧, 肖文发, 张守攻, 黄志霖, 曾立雄, 潘, 磊. 三峡库区森林植被分布的地形分异特征[J]. 长江流域资源与环境, 2009, 18(6): 528-. |
[15] | 叶殿秀 张 强 邹旭恺 陈鲜艳. 近几十年三峡库区主要气象灾害变化趋势[J]. 长江流域资源与环境, 2009, 18(3): 296-300. |
|