长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 876-881.doi: 10.11870/cjlyzyyhj201505022

• 生态环境 • 上一篇    下一篇

小型季节性河流生态补水需水量及调度方案研究

卿晓霞1, 郭庆辉2, 周健1, 王兆兴1   

  1. 1. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045;
    2. 四川省建筑设计研究院, 四川 成都 610017
  • 收稿日期:2014-04-14 修回日期:2014-08-25 出版日期:2015-05-20
  • 作者简介:卿晓霞(1963~),女,教授,博士,主要从事水处理自动控制技术研究.E-mail:qxx118@126.com
  • 基金资助:
    国家水体污染控制与治理科技重大专项(2012ZX07307-002)

RESEARCH OF ECOLOGICAL WATER COMPENSATION DEMAND AND AUTOMATIC SCHEDULING SOLUTIONS FOR SMALL SEASONAL STREAM

QING Xiao-xia1, GUO Qing-hui2, ZHOU Jian1, WANG Zhao-xing1   

  1. 1. ;
    2. Sichuan Provincial Architectural Design and Research Institute, Chengdu 610017, China
  • Received:2014-04-14 Revised:2014-08-25 Online:2015-05-20

摘要: 针对目前城市河流经常断流的突出问题, 以重庆主城典型重污染河流伏牛溪为例, 开展城市小型季节性河流生态补水自动调度方案的研究。通过分析伏牛溪年内径流特征, 确定了其补水时段为每年的11月~次年4月;通过计算伏牛溪生态环境需水量, 认为对于小型季节性河流的补水不应一味地追求常年丰沛、稳定的水量, 而应以重塑季节性河流天然健康的自然流态为目标, 从而提出了一种基于天然健康需水量的生态补水调度方案, 并制定了河源水库电动阀门及补水泵的运行控制策略等具体技术措施。结果表明, 采用该调度方案, 不仅能实现伏牛溪生态补水系统的自动化运行, 而且与现有补水系统运行方式相比, 可节能67.4%, 为补水系统的可持续运行创造了条件。

关键词: 天然健康需水量, 城市季节性河流, 生态补水

Abstract: Flow break of urban streams has been an urgent issue in many cities, some technical measures should be implemented to restore the ecological environment of such rivers. To solve this problem, a case study of ecological water compensation dispatch scheme on the Funiu River, a heavily polluted river in Chongqing, was investigated in this paper. Firstly, the characteristics of the annual runoff of the Funiu River were analyzed. Monthly runoff data of the Funiu River from 1960 to 2004 was obtained using the hydrologic analogy method, and its annual average runoff was 0.245 m3/s. The concentration degree was 0.48 and concentration period was 191.4° as a result of the inner annual runoff characteristics analysis, demonstrating that duration of the wet season was nearly equal with the dry season. The rainfall was mainly concentrated in July. Meanwhile, ecological water compensation time was determined to be November to next April accordingly. Secondly, research on eco-environmental water requirement was carried out for the Funiu River, the results were shown as follows: basic ecological flows in the wet season is 0.147 m3/s, while in the dry season is 0.098 m3/s; diluting and self-cleaning water demand in the wet season is 1.45 m3/s, while in the dry season it is 0.49 m3/s. Moreover, landscape water demand, evaporation and leakage water demand, and outer river water demand is 2.546 m3/s, 0.02 m3/s and 0.02 m3/s, respectively. Above all, eco-environmental water requirement of the Funiu River is 2.586 m3/s. According to the water resource condition of the Funiu River basin, the calculated result of eco-environmental water demand is difficult to meet. Therefore, we consider that the ideas of ecological water supplement on these small seasonal rivers should be changed, plentiful and stable flow should not be pursued all the year round for the small seasonal river, it would be better to understand the connotation of eco-environmental water demand from a new perspective. Consequently, an automatic ecological water compensation dispatch scheme was brought out, aiming at reshaping the Funiu River with natural seasonal health. Furthermore, the control strategy of the make-up pump and the electric valve in the reservoir at the river source was formulated. The result showed that the technical solutions not only realized the automatically running of ecological water compensation system, but also saved 67.4% energy compared with present operation mode. The result of this research showed that the solutions could well guarantee the ecological water compensation system running continuously.

Key words: water demand of natural health, urban seasonal stream, ecological water compensation

中图分类号: 

  • X522
[1] 张洪斌, 李兰, 甘衍军, 等.荆门市竹皮河的生态补水方案研究[J].人民长江, 2010, 41(10):83-85.
[2] 吴蕾.巢湖水用于城市景观河道生态补水工程[J].中国给水排水, 2013, 29(6):69-72.
[3] 詹道江, 徐向阳, 陈元芳, 等.工程水文学[M].北京:中国水利水电出版社, 2010.
[4] 杨远东.河川径流年内分配的计算方法[J].地理学报, 1984, 39(2):218-227.
[5] TENTANT D L.Instream flow regimens for fish, wildlife, recreation and related environmental resources[J].Fisheries, 1976, 1(4):6-10.
[6] 盛琼.近45 a来我国蒸发皿蒸发量的变化及原因分析[D].南京:南京信息工程大学硕士学位论文, 2006.
[7] 杨志峰, 崔保山, 刘静玲, 等.生态环境需水量理论、方法与实践[M].北京:科学出版社, 2003.
[8] JIA H F, MA H T, WEI M J.Calculation of the minimum ecological water requirement of an urban river system and its deployment:A case study in Beijing central region[J].Ecological Modelling, 2004, 24(10):2324-2328.
[9] 徐志侠, 陈敏建, 董增川, 等.湖泊最低生态水位计算方法[J].生态学报, 2004, 24(10):2324-2328.
[1] 辛在军, 李秀珍, 贾悦, 郭文永, 孙永光. 模拟及河道实验浮床水芹根系生长及生物量分配对比研究[J]. 长江流域资源与环境, 2016, 25(Z1): 50-58.
[2] 李国莲, 谢发之, 张瑾, 陈广洲, 汪静柔. 巢湖水及沉积物中总磷的分布变化特征[J]. 长江流域资源与环境, 2016, 25(05): 830-836.
[3] 张雷, 鲁春霞, 李江苏. 中国大河流域开发与国家文明发育[J]. 长江流域资源与环境, 2015, 24(10): 1639-1645.
[4] 李正阳, 袁旭音, 王欢, 许海燕, 陈海龙, 鲁朝朋. 西苕溪干流水体、悬浮物和表层沉积物中营养盐分布特征与水质评价[J]. 长江流域资源与环境, 2015, 24(07): 1150-1156.
[5] 张千千, 缪丽萍, 孙继朝, 刘景涛. 稳定同位素识别水体硝酸盐污染来源的研究进展[J]. 长江流域资源与环境, 2015, 24(05): 742-749.
[6] 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋玉芝,秦伯强, 高光. 附着生物对富营养化水体氮磷的去除效果[J]. 长江流域资源与环境, 2009, 18(2): 180 .
[2] 许晗之,汪院生,常本春,王腊春. 江苏太湖地区调水改善水环境研究[J]. 长江流域资源与环境, 2006, 15(Sup1): 92 -96 .
[3] 徐丽华,岳文泽,徐建华. 城市热场剖面的分形维数计算及其意义研究——以上海中心城区为例[J]. 长江流域资源与环境, 2007, 16(3): 384 .
[4] 冯 平,徐向广,李 海. 基于模糊集合分析的汛期分期方法及其应用[J]. 长江流域资源与环境, 2008, 17(3): 495 .
[5] 马荣华,杨桂山. 长江岸线与岛屿演化的空间分形研究——以江苏段为例[J]. 长江流域资源与环境, 2004, 13(6): 541 -545 .
[6] 胡冰川,吴 强,周曙东. 粮食生产的投入产出影响因素分析——基于江苏省粮食生产的实证研究[J]. 长江流域资源与环境, 2006, 15(1): 71 -75 .
[7] 贾 丽, 沈玉芳. 我国生态工业园发展的SWOT分析[J]. 长江流域资源与环境, 2007, 16(6): 711 .
[8] 谢月玉, 王式功, 董安祥, 尚可政. 澳洲冷空气活动与长江中下游降水的联系分析[J]. 长江流域资源与环境, 2009, 18(7): 625 .
[9] 虞孝感, 王磊. 极化区功能识别与评价指标研究[J]. 长江流域资源与环境, 2011, 20(07): 775 .
[10] 孙 君| 郇红艳. 基于F-AHP的产业转移后可持续发展评价模型构建与实证研究[J]. 长江流域资源与环境, 2011, 20(10): 1157 .