长江流域资源与环境 >> 2016, Vol. 25 >> Issue (05): 830-836.doi: 10.11870/cjlyzyyhj201605017

• 生态环境 • 上一篇    下一篇

巢湖水及沉积物中总磷的分布变化特征

李国莲, 谢发之, 张瑾, 陈广洲, 汪静柔   

  1. 安徽建筑大学环境与能源工程学院, 水污染控制与废水资源化省级重点实验室, 安徽 合肥 230601
  • 收稿日期:2015-08-04 修回日期:2015-09-24 出版日期:2016-05-20
  • 作者简介:李国莲(1979~)女,副教授,博士,主要从事环境化学与污染控制研究.E-mail:glli@mail.ustc.edu.cn
  • 基金资助:
    安徽省教育厅自然科学基金(KJ2015JD04,KJ2013A067);安徽省自然科学基金(1608085MB43);安徽建筑大学2013博士启动基金

SPATIAL AND TEMPORAL VARIATION OF PHOSPHORUS IN WATER AND SEDIMENT FROM CHAOHU LAKE

LI Guo-lian, XIE Fa-zhi, ZHANG Jin, CHEN Guang-zhou, WANG Jing-rou   

  1. School of Environmental and Energy Engineering, Anhui Jianzhu University, Provincial Key Laboratory of Water Pollution Control and Waste Water Utilization, Hefei 230601, China
  • Received:2015-08-04 Revised:2015-09-24 Online:2016-05-20
  • Supported by:
    Natural Science Foundation of Education Department of Anhui Province (KJ2015JD04, KJ2013A067);Natural Science Foundation of Anhui Province (1608085MB43);the 2013 Doctoral Fund of Anhui Jianzhu University

摘要: 磷是导致巢湖水体富营养化的主要营养物质。采集大量巢湖表层水和沉积物样品,通过检测上覆水和沉积物中总磷含量,分析巢湖水体中磷的时空变化及赋存特征。结果显示:巢湖南淝河和裕溪河河口的上覆水中总磷含量值时间变化特征为8月 > 5月 > 3月 > 12月;且南淝河口总磷含量年均值超过地表水Ⅴ类水质标准,明显高于裕溪河口值;表层水和沉积物中总磷含量在空间分布上呈西高东低趋势,最高值均出现在靠近合肥市河口处。巢湖周边土壤及湖区磷的等值线分布表明:杭埠河流域农业污染、东巢湖东南部水土流失可能是巢湖磷面源污染的主要来源。巢湖上覆水和沉积物中总磷的相关系数为0.515,蓝藻爆发期全湖表层沉积物中总磷含量显著减少,揭示目前内源磷释放已是巢湖富营养化的主要因素。结果将对巢湖流域的污染综合防治及蓝藻治理工作提供科学依据。

关键词: 总磷, 巢湖, 赋存特征, 来源

Abstract: Phosphorus is the main nutrients to eutrophication in the Chaohu Lake, the study on the content and spatial distribution of phosphorus in sediments can help to guide eutrophication reduction of the Lake. A large number of water and sediment samples were collected from entire lake including its main river entrances. The temporal and spatial variation of total phosphorus and its occurrence characteristics in the Chaohu Lake were investigated. The results showed that the seasonal change trend of total phosphorus contents in Nanfei River and Yuxi River entrances presented a pattern of August May March December. The annual average of total phosphorus content was more than Grade Ⅴ in the Nanfei River entrance, significantly higher than that of the Yuxi River entrance. The spatial distribution indicated that total phosphorus contents in surface water and sediment had a similar trend, the patches of highest contents confined in the entrances near the Hefei City, while there was no significant river input in the eastern lake. Spatial characteristics of total phosphorus in the topsoil (mg·kg-1) of Chaohu Lake and its watershed showed agricultural pollution in the Hangbu river basin and surface runoff in southeastern lake might be the primary nonpoint phosphorus pollution. The correlation coefficient of total phosphorus between surface water and sediment was 0.515, and the total phosphorus contents in surface sediment were significantly decreased during the algal bloom period, suggesting that endogenous phosphorus cycle was key to Chaohu Lake eutrophication. Our results can provide scientific basis for the comprehensive treatment of the pollution in the Chaohu River Basin and the control of blue algae.

Key words: total phosphorus, Chaohu Lake, occurrence characteristics, source

中图分类号: 

  • X522
[1] BRIGAULT S, RUBAN V. External phosphorus load estimates and Pbudget for the hydroelectric reservoir of Bort-Les-orgues, France[J]. Water, Air, and Soil Pollution, 2000, 119(1/4):91-103.
[2] PAN G, KROM M D, HERUT B. Adsorption-desorption of phosphate on airborne dust and river borne particulates in East Mediterranean Seawater[J]. Environmental Science & Technology, 2002, 36(16):3519-3524.
[3] SØNDERGAARD M, JENSEN J P, JEPPESEN E. Internal phosphorus loading in a shallow eutrophic Danish lakes[J]. Hydrobiologia, 1999, 408-409:145-152.
[4] JIN X D, HE Y L, KIRUMBA G, et al. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir[J]. Ecological Engineering, 2013, 55:62-66.
[5] KOWALCZEWSKA-MADURA K, GOŁDYN R, DERA M. Spatial and seasonal changes of phosphorus internal loading in two lakes with different trophy[J]. Ecological Engineering, 2015, 74:187-195.
[6] CHA H J, LEE C B, KIM B S, et al. Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea)[J]. Marine Geology, 2005, 216(3):127-143.
[7] 王健, 张靖天, 昝逢宇, 等. 中国东部浅水湖泊沉积物总氮总磷基准阈值研究[J]. 生态环境学报, 2014, 23(6):992-999. [WANG J, ZHANG J T, ZAN F Y, et al. Study on sediment TN and TP criteria in eastern shallow lakes, China[J]. Ecology and Environmental Sciences, 2014, 23(6):992-999.]
[8] WU M, ZHANG W, WANG X J, et al. Application of MODIS satellite data in monitoring water quality parameters of Chaohu Lake in China[J]. Environmental Monitoring Assessment, 2009, 148(1/4):255-264.
[9] YU H B, XI B D, JIANG J Y, et al. Environmental heterogeneity analysis, assessment of trophic state and source identification in Chaohu Lake, China[J]. Environmental Science and Pollution Research, 2011, 18(8):1333-1342.
[10] 阎伍玖, 王心源. 巢湖流域非点源污染初步研究[J]. 地理科学, 1998, 18(3):263-267. [YAN W J, WANG X Y. Preliminary study on non-point sources pollution in the Chaohu lake drainage basin[J]. Scientia Geographica Sinica, 1998, 18(3):263-267.]
[11] 陈书琴, 储昭升, 胡社荣, 等. 巢湖周边表土中有机质、全氮和全磷空间分布及其相关性[J]. 环境科学, 2012, 33(9):3031-3037. [CHEN S Q, CHU Z S, HU S R, et al. Spatial distribution characteristics and correlation analysis of organic matter, total nitrogen and total phosphorus in topsoil around Chaohu Lake[J]. Environmental Science, 2012, 33(9):3031-3037.]
[12] 贾铁飞, 张卫国, 俞立中. 1860s以来巢湖沉积物金属元素富集特点及其对人类活动的指示意义[J]. 地理科学, 2009, 28(5):1217-1226. [JIA T F, ZHANG W G, YU L Z. Metal element enrichment characteristics of sediments in Chaohu Lake since the 1860s and its implication to human activity[J]. Geographical Research, 2009, 28(5):1217-1226.]
[13] WANG J Z, ZHANG K, LIANG B, et al. Occurrence, source apportionment and toxicity assessment of polycyclic aromatic hydrocarbons in surface sediments of Chaohu, one of the most polluted lakes in China[J]. Journal of Environmental Monitoring, 2011, 13(12):3336-3342.
[14] LI G L, LIU G J, ZHOU C C, et al. Spatial distribution and multiple sources of heavy metals in the water of Chaohu Lake, Anhui, China[J]. Environment Monitoring Assessment, 2012, 184(5):2763-2773.
[15] 陈富荣. 巢湖沉积物镉等重金属地球化学分布、赋存特征及危害性研究[J]. 安徽地质, 2009, 19(3):200-203, 189. [CHEN F R. Distribution of heavy metals in the Chao lake sediments and the ecological risk[J]. Geology of Anhui, 2009, 19(3):200-203, 189.]
[16] 汤宝靖, 陈雷, 姜霞, 等. 巢湖沉积物磷的形态及其与间隙水磷的关系[J]. 农业环境科学学报, 2009, 28(9):1867-1873. [TANG B J, CHEN L, JIANG X, et al. Phosphorus speciations in sediments and their relationships with soluble phosphorus concentrations in porewater in lake Chaohu[J]. Journal of Agro-Environment Science, 2009, 28(9):1867-1873.]
[17] 昝逢宇, 霍守亮, 席北斗, 等. 巢湖近代沉积物及其间隙水中营养物的分布特征[J]. 环境科学学报, 2010, 30(10):2088-2096. [ZAN F Y, HUO S L, XI B D, et al. Characteristics of nutrient profiles in sediments and pore water of Lake Chaohu[J]. Acta Scientiae Circumstantiae, 2010, 30(10):2088-2096.]
[18] 周加丽, 吴国庆, 操奕, 等. 巢湖流域土壤全磷背景值调查报告[EB/OL]. (2009-05-10). http://wenku.baidu.com/view/1c9c742e2af90242a895e593.html.
[19] 国家环境保护总局. 水和废水监测分析方法[M]. 第4版. 北京:中国科学出版社, 2002:150-169.
[20] 李波, 李祥敏, 曹慧, 等. 湖泊蓝藻暴发的机制与防治[J]. 江苏科技信息, 2007(7):17-20.
[21] 韩沙沙, 温琰茂. 富营养化水体中沉积物中磷的释放及其影响因素[J]. 生态学杂志, 2004, 23(2):98-101. [HAN S S, WEN Y M. Phosphorus release and affecting factors in the sediments of eutrophic water[J]. Chinese Journal of Ecology, 2004, 23(2):98-101.]
[22] 孔明, 张路, 尹洪斌, 等. 蓝藻暴发对巢湖表层沉积物氮磷及形态分布的影响[J]. 中国环境科学, 2014, 34(5):1285-1292. [KONG M, ZHANG L, YIN H B, et al. Influence of algae bloom on distribution of total and speciation of nitrogen and phosphorus in the surface sediments from Lake Chaohu[J]. China Environmental Science, 2014, 34(5):1285-1292.]
[23] HOLDREN G C, ARMSTRONG D E. Factors affecting phosphorus release from intact lake sediment cores[J]. Environment Science & Technology, 1980, 14(1):79-87.
[24] XIE L Q, XIE P. Long-term (1956-1999) dynamics of phosphorus in a shallow, subtropical Chinese Lake with the possible effects of cyanobacterial blooms[J]. Water Research, 2002, 36(1):343-349.
[25] 温胜芳, 单保庆, 张洪. 巢湖表层沉积物磷的空间分布差异性研究[J]. 环境科学, 2012, 33(7):2322-2329. [WEN S F, SHAN B Q, ZHANG H. Spatial distribution character of phosphorus fractions in surface sediment from Chaohu Lake[J]. Environmental Science, 2012, 33(7):2322-2329.]
[26] 屠清瑛, 顾丁锡, 尹澄清. 巢湖:富营养化研究[M]. 合肥:中国科学技术大学出版社, 1990:35-47.
[27] 徐康, 刘付程, 安宗胜, 等. 巢湖表层沉积物中磷赋存形态的时空变化[J]. 环境科学, 2011, 32(11):3255-3263. [XU K, LIU F C, AN Z S, et al. Spatial and temporal variations of phosphorus forms in surface sediments of Chaohu Lake[J]. Environmental Science, 2011, 32(11):3255-3263.]
[28] 龚莹, 王宁, 李玉成, 等. 巢湖水体-沉积物磷形态与有效性[J]. 生态与农村环境学报, 2015, 31(3):359-365. [GONG Y, WANG N, LI Y C, et al. Forms and bioavailability of phosphorus in water and sediments of Lake Chaohu[J]. Journal of Ecology and Rural Environment, 2015, 31(3):359-365.]
[29] 刘恩峰, 杜臣昌, 羊向东. 巢湖典型小流域表土磷的空间分异特征及影响因素分析[J]. 农业环境科学学报, 2012, 31(5):1015-1020. [LIU E F, DU C C, YANG X D. Spatial variation of phosphorus in topsoil of a typical watershed in Chaohu lake basin and the main controlling factors analysis[J]. Journal of Agro-Environment Science, 2012, 31(5):1015-1020.]
[30] 王雪蕾, 王新新, 朱利, 等. 巢湖流域氮磷面源污染与水华空间分布遥感解析[J]. 中国环境科学, 2015, 35(5):1511-1519. [WANG X L, WANG X X, ZHU L, et al. Spatial analysis on diffuse pollution and algal bloom characteristic with remote sensing in Chao Lake Basin[J]. China Environmental Science, 2015, 35(5):1511-1519.]
[31] ZHOU H P, GAO C. Assessing the risk of phosphorus loss and identifying critical source areas in the Chaohu Lake watershed, China[J]. Environmental Management, 2011, 48(5):1033-1043.
[32] 阎伍玖, 张建春, 纪敏. 巢湖流域河水中N, P盐分组成特征分析[J]. 土壤侵蚀与水土保持学报, 1999, 5(2):35-38. [YAN W J, ZHANG J C, JI M. Characteristics of N, P formation in main rivers of Chaohu Lake valley[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(2):35-38.]
[33] ZAN F Y, HUO S L, XI B D, et al. Phosphorus distribution in the sediments of a shallow eutrophic lake, Lake Chaohu, China[J]. Environmental Earth Sciences, 2011, 62(8):1643-1653.
[34] WANG C H, QI Y, PEI Y S. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals[J]. Chemical Engineering Journal, 2012, 209:379-385.
[35] IMMERS A K, BAKKER E S, VAN DONK E, et al. Fighting internal phosphorus loading:an evaluation of the large scale application of gradual Fe-addition to a shallow peat lake[J]. Ecological Engineering, 2015, 83:78-89.
[36] 孟春红, 赵冰. 东湖沉积物中氮磷形态分布的研究[J]. 环境科学, 2008, 29(7):1831-1837. [MENG C H, ZHAO B. Vertical distribution of species of nitrogen and phosphorus in the sediments of Donghu Lake[J]. Environmental Science, 2008, 29(7):1831-1837.]
[1] 陈星, 张平究, 包先明, 张璐璐, 张海霞, 韩燕青. 改良剂对湿地土壤团聚体及抗悬浮能力的影响试验[J]. 长江流域资源与环境, 2016, 25(12): 1903-1909.
[2] 滕加泉, 程钟, 梁丹妮, 马咸, 吴建会. 常州市大气PM2.5中水溶性离子组成及来源[J]. 长江流域资源与环境, 2016, 25(09): 1368-1374.
[3] 孙鸿鹄, 程先富, 陈翼翔, 张媛. 区域洪涝灾害恢复力时空演变研究——以巢湖流域为例[J]. 长江流域资源与环境, 2016, 25(09): 1384-1394.
[4] 侯祎亮, 安艳玲, 吴起鑫, 吴旌滔, 黄娟, 段少琼, 刘霄. 贵州省三岔河流域水化学特征及其控制因素[J]. 长江流域资源与环境, 2016, 25(07): 1121-1128.
[5] 黄木易, 何翔. 巢湖流域土地景观格局变化及生态风险驱动力研究[J]. 长江流域资源与环境, 2016, 25(05): 743-750.
[6] 钱红, 严云志, 储玲, 朱仁, 高俊峰, 蔡永久. 巢湖流域河流鱼类群落的时空分布[J]. 长江流域资源与环境, 2016, 25(02): 257-264.
[7] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11): 1860-1869.
[8] 匡武, 芮明, 张彦辉, 严云志, 吴添天. 巢湖湖滨带生态恢复工程对暴雨径流氮磷削减效果研究[J]. 长江流域资源与环境, 2015, 24(11): 1906-1912.
[9] 姚飞, 陈龙乾, 张宇, 吴沛瑶, 张红梅, 王秉义. 巢湖水陆交错带生态服务价值梯度分析[J]. 长江流域资源与环境, 2015, 24(09): 1568-1576.
[10] 孙鸿鹄, 程先富, 戴梦琴, 王祥, 康海迪. 基于DEMATEL的区域洪涝灾害恢复力影响因素及评价指标体系研究——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(09): 1577-1583.
[11] 程先富, 戴梦琴, 郝丹丹, 吴庆双. 基于情景分析的区域洪涝灾害风险评价——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(08): 1418-1424.
[12] 张志明, 高俊峰, 闫人华. 基于水生态功能区的巢湖环湖带生态服务功能评价[J]. 长江流域资源与环境, 2015, 24(07): 1110-1118.
[13] 杜雪莲, 王世杰, 罗绪强. 黔中喀斯特石漠化区不同小生境常见木本植物水分来源特征[J]. 长江流域资源与环境, 2015, 24(07): 1168-1176.
[14] 张千千, 缪丽萍, 孙继朝, 刘景涛. 稳定同位素识别水体硝酸盐污染来源的研究进展[J]. 长江流域资源与环境, 2015, 24(05): 742-749.
[15] 罗世霞 朱淮武 张笑一 关小满. 红枫湖地表水中多环芳烃的分布及来源[J]. 长江流域资源与环境, 2009, 18(5): 466-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .