长江流域资源与环境 >> 2015, Vol. 24 >> Issue (11): 1898-1905.doi: 10.11870/cjlyzyyhj201511013
布乃顺1, 王坤1, 侯玉乐1, 李钢1, 齐淑娟1, 方长明2, 渠俊峰1
BU Nai-shun1, WANG Kun1, HOU Yu-le1, LI Gang1, QI Shu-juan1, FANG Chang-ming2, QU Jun-feng1
摘要: 周期性的潮汐是滨海湿地重要的水文特征,为了探讨潮汐的半月周期(包括小潮期和大潮期)对土壤理化性质的影响及可能的机制,于2009年7月中下旬测定了长江口崇明东滩湿地土壤理化性质在小潮期和大潮期交替周期内的变化规律。结果表明,与小潮期相比,由于频繁的潮水淹没,大潮期0~5 cm土壤含水量的增加量从低潮滩向高潮位依次为:44.8%、18.5%、10.9%和14.3%,5~10 cm含水量的增加量从低潮滩向高潮位依次为:19.2%、9.8%、12.6%和16.2%,10~20 cm则依次为:5.6%、6.1%、2.5%和7.3%。大潮期,从低潮滩向高潮滩增加的盐度依次为0.18、0.13、0.10和0.09 ms·cm-1,增加的硫酸盐依次为0.32、0.21、0.16、0.13 mg·g-1。与小潮期相比,大潮期氧化还原电位(Eh)显著降低;土壤容重、pH、可溶性有机碳和可溶性氮在大小潮期间无明显差异。此外,在潮汐的半月周期内,低潮滩土壤比高潮滩有更高淹水频率和更长淹水时间,受潮水的影响更明显,大潮期低潮滩土壤含水量、盐度和硫酸盐的增加幅度大于高潮滩,低潮滩土壤Eh降低幅度则小于高潮滩。半月周期的潮汐可以显著影响滨海湿地的部分土壤理化性质,且不同潮位的土壤性质对潮汐的响应程度不同,进而可能会对湿地植物生长和相关生态过程起到重要的调控作用。
中图分类号:
[1] BARBIER E B,HACKER S D,KENNEDY C,et al.The value of estuarine and coastal ecosystem services[J].Ecological Monographs,2011,81:169-193. [2] TOWNEND I,FLETCHER C,KNAPPEN M,et al.A review of salt marsh dynamics[J].Water and Environment Journal,2011,25:477-488. [3] KVALE EP.The origin of neap-spring tidal cycles[J].Marine Geology,2006,235:5-18. [4] 高君颖,王维奇,鄂 焱,等.潮汐对闽江河口湿地土壤理化特征的影响分析[J].湿地科学与管理,2011,7:48-52. [5] TONG C,WANG W Q,ZENG C S,et al.Methane emission from a tidal marsh in the Min River estuary,southeast China[J].Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2010,45:506-516. [6] 仝 川,姚 顺,王维奇,等.中国东南沿海短叶茳芏潮汐沼泽湿地甲烷动态[J].中国科学:地球科学,2012,42:723-735. [7] 徐宏发,赵云龙.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社,2005. [8] YANG S L,DING P X,CHEN S L.Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River,China[J].Geomorphology, 2001,38:167-180. [9] WANG Q,AN S Q,MA Z J,et al.Invasive Spartina alterniflora:biology,ecology and management[J].Acta Phytotaxonomica Sinica,2006,44:559-588. [10] LI B,LIAO C H,ZHANG X D,et al.Spartina alterniflora invasions in the Yangtze River estuary,China:an overview of current status and ecosystem effects[J].Ecological Engineering,2009,35:511-520. [11] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000. [12] SEYBOLD C A,MERSIE W,HUANG J Y,et al.Soil redox,pH,temperature,and water-table patterns of a freshwater tidal wetland[J].Wetlands,2002,22:149-158. [13] DE MARS H,WASSEN M J.Redox potentials in relation to water levels in different mire types in the Netherlands and Poland[J].Plant Ecology,1999,140:41-51. [14] TANG L,GAO Y,WANG C H,et al.How tidal regime and treatment timing influence the clipping frequency for controlling invasive Spartina alterniflora:implications for reducing management costs[J].Biological Invasions,2010,12:593-601. [15] MENDOZA U N,DA CRUZ C C,MENEZES MP,et al.Flooding effects on phosphorus dynamics in an Amazonian mangrove forest,Northern Brazil[J].Plant and Soil,2012,353:107-121. [16] MORRIS J T,HASKIN B.A 5-year record of aerial primary production and stand characteristics of Spartina alterniflora[J].Ecology,1990,71:2209-2217. [17] TRILLA G G,DE MARCO S,MARCOVECCHIO J,et al.Net primary productivity of Spartina densiflora Brong in an SW Atlantic Coastal Salt Marsh[J].Estuaries and Coasts,2010,33:953-962. [18] PENNINGS S C,GRANT M B,BERTNESS M D.Plant zonation in low-latitude salt marshes:disentangling the roles of flooding,salinity and competition[J].Journal of Ecology,2005,93:159-167. [19] DAUSSE A,GARBUTT A,NORMAN L,et al.Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient[J].Estuarine Coastal and Shelf Science,2012,100:83-92. [20] HINES M E,BANTA G T,GIBLIN AE,et al.Acetate concentrations and oxidation in salt-marsh sediments[J].Limnology and Oceanography, 1994,39:140-148. [21] MOZDZER T J,KIRWAN M,MCGLATHERY K J,et al.Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora[J].Marine Ecology-Progress Series, 2011,433:43-52. [22] EHRENFELD J G,RAVIT B,ELGERSMA K.Feedback in the plant-soil system[J].Annual Review of Environment and Resources,2005,30:75-115. [23] PATRA S,刘丛强,李思亮,等.长江口溶解无机碳循环的地球化学研究[J].地球与环境,2010,38:409-413. [24] CHENG X,LUO Y,CHEN J,et al.Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island[J].Soil Biology and Biochemistry,2006,38:3380-3386. [25] 祖元刚,李 冉,王文杰,等.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报,2011,31:5207-5216. [26] PILSKALN C H,PADUAN J B,CHAVEZ F P,et al.Carbon export and regeneration in the coastal upwelling system of Monterey Bay,central California[J].Journal of Marine Research,1996,54:1149-1178. [27] BOUCHARD V,LEFEUVRE J C.Primary production and macro-detritus dynamics in a European salt marsh:carbon and nitrogen budgets[J].Aquatic Botany,2000,67:23-42. [28] YAN Y,ZHAO B,CHEN J Q,et al.Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series[J].Global Change Biology,2008,14:1690-1702. [29] TZORTZIOU M,NEALE P J,MEGONIGAL J P,et al.Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary[J].Marine Ecology-Progress Series,2011,426:41-56. [30] WOLFF W J,VANEEDEN M J,LAMMENS E.Primary production and import of particulate organic matter on asalt marsh in the Netherlands[J].Netherlands Journal of Sea Research,1979,13:242-255. [31] CHMURA G L,HUNG G A.Controls on salt marsh accretion:a test in salt marshes of Eastern Canada[J].Estuaries, 2004,27:70-81. [32] NEUBAUER S C.Contributions of mineral and organic components to tidal freshwater marsh accretion[J].Estuarine Coastal and Shelf Science,2008,78:78-88. [33] LOOMIS M J,CRAFT C B.Carbon sequestration and nutrient (nitrogen,phosphorus) accumulation in river-dominated tidal marshes,Georgia,USA[J].Soil Science Society of America Journal,2010,74:1028-1036. [34] PENG R H,FANG C M,LI B,et al.Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze Estuary,China[J].Oecologia,2011,165:797-807. [35] HOWES B L,DACEY J W H,GOEHRINGER D D.Factors controlling the growth form of Spartina alterniflora:feedbacks between aboveground production,sediment oxidation,nitrogen and salinity[J].Journal of Ecology,1986,74:881-898. [36] 汪承焕.环境变异对崇明东滩优势盐沼植物生长、分布与种间竞争的影响[D].上海:复旦大学,2009. |
[1] | 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109. |
[2] | 李艳, 高艳娜, 戚志伟, 姜楠, 仲启铖, 姜姗, 王开运, 张超. 滨海芦苇湿地土壤微生物数量对长期模拟增温的响应[J]. 长江流域资源与环境, 2016, 25(11): 1738-1747. |
[3] | 周剑虹, 王江涛, 欧强, 仲启铖, 王开运, 姜楠, 李艳. 崇明东滩围垦区芦苇湿地土壤盐分动态研究[J]. 长江流域资源与环境, 2015, 24(09): 1545-1551. |
[4] | 凌成星, 张怀清, 林 辉. 利用混合水体指数模型(CIWI)提取滨海湿地水体的信息[J]. 长江流域资源与环境, 2010, 19(2): 152-. |
[5] | 况润元 周云轩 李行 田波. 崇明东滩鸟类生境适宜性空间模糊评价[J]. 长江流域资源与环境, 2009, 18(3): 229-233. |
[6] | 何小勤, 戴雪荣, 顾成军. 崇明东滩不同部位的季节性沉积研究[J]. 长江流域资源与环境, 2009, 18(2): 157-. |
[7] | 郑宗生, 周云轩, 刘志国, 田 波. 基于水动力模型及遥感水边线方法的潮滩高程反演[J]. 长江流域资源与环境, 2008, 17(5): 756-756. |
[8] | 李 生,张守攻,姚小华,任华东. 黔中石漠化地区不同土地利用方式对土壤环境的影响[J]. 长江流域资源与环境, 2008, 17(3): 384-384. |
|