长江流域资源与环境 >> 2016, Vol. 25 >> Issue (01): 163-170.doi: 10.11870/cjlyzyyhj201601020

• 生态环境 • 上一篇    

三峡库区典型土壤酸碱缓冲性能及其影响因素研究

杨杉1,2,3, 吴胜军1, 周文佐2, 吕明权1, 张德微1, 黄平1   

  1. 1. 中国科学院重庆绿色智能技术研究院, 重庆 400714;
    2. 西南大学地理科学学院, 重庆 400715;
    3. 重庆市环境科学研究院, 重庆 401147
  • 收稿日期:2015-05-13 修回日期:2015-07-31 出版日期:2016-01-20
  • 通讯作者: 黄平 E-mail:huangping@cigit.ac.cn
  • 作者简介:杨杉(1989~),女,硕士研究生,主要从事为农业面源污染消减与湿地物质循环及其生态过程的研究.E-mail:yangshan@cigit.ac.cn
  • 基金资助:
    中国科学院西部行动计划(KZCX2-XB3-14)[Chinese Academy of Sciences Action-Plan for West Development Program (KZCX2-XB3-14)];国家自然科学基金项目(41401243)[National Natural Science Foundation of China (41401243)];重庆市基础与前沿研究项目(cstc2013jcyjA0302)[Basic and Frontier Research Program of Chongqing (No.cstc2013jcyjA0302)];重庆市科技支撑示范工程(cstc2012jcsf-jfzhX0003)[Scientific and Technological Demonstration Project of Chongqing (No.cstc2012jcsf-jfzhX0003)]

ACID AND ALKALINE BUFFERING CAPACITY AND ITS INFLUENCING FACTORS OF TYPICAL SOILS IN THE THREE GORGES RESERVOIR AREA

YANG Shan1,2,3, WU Sheng-jun1, ZHOU Wen-zuo2, LV Ming-quan1, ZHANG De-wei1, HUANG Ping1   

  1. 1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China;
    2. School of Geography Science, Southwest University, Chongqing 400715, China;
    3. Chongqing Research Academy of Environmental Sciences, Chongqing 401147, China
  • Received:2015-05-13 Revised:2015-07-31 Online:2016-01-20

摘要: 受酸沉降和化肥施用等外源性酸输入的影响,三峡库区土壤面临着严重的酸化威胁。通过选取三峡库区两种典型土壤(紫色土和黄壤)作为研究对象,采用酸碱滴定法对土壤酸碱缓冲性能及其影响因素进行了研究。结果表明:在一定的pH范围内,紫色土(pH 6.5~2.5、6.2~11.5)和黄壤(pH 5.6~2.8、5.5~10.7)的pH变化与外源性酸、碱加入量均呈线性相关关系。通过分段拟合获取的缓冲容量结果显示,紫色土酸、碱缓冲容量分别为101.3、34.6 mmol/kg;而黄壤酸、碱缓冲容量分别为105.3、38.0 mmol/kg。黄壤和紫色土主要受碳酸钙与阳离子交换的缓冲作用;缓冲体系及初始pH、机械组成等土壤理化性质的不同是导致库区典型土壤酸碱缓冲容量差异的主要原因,总体表现为黄壤酸、碱缓冲性能略优于紫色土。此外,由于近年来酸沉降和氮肥用量的增加,使得库区土壤面临的酸化威胁呈上升趋势。该结果对库区土壤环境容量和典型土壤酸化潜势等研究具有参考价值,还可为区域外源性酸临界值评估以及应对策略制定提供理论依据。

关键词: 三峡库区, pH缓冲容量, 酸碱滴定, 紫色土, 黄壤

Abstract: Exogenous acid input, such as acid deposition and chemical fertilizer, have contributed to the serious soil acidification in the Three Gorges Reservoir. In this study, the titration curve method was adopted to investigate the pH buffering capacity (pH BC) and influencing factors of typical soil (purple soil and yellow soil) in the Three Gorges Reservoir. Linear regressions were used to fit the linear portion of each titration curve and the slopes of these lines were used as the determination of pH BC. The results indicated that in a certain pH range (purple soil:pH 6.5-2.5, 6.2-11.5, yellow soil:pH 5.6-2.8, 5.5-10.7), the pH changes of the two soils showed linear correlations to the amount of acid or alkali addition. Furthermore, the slope-derived pH BC of acid and alkali of purple soil were 101.3 mmol/kg and 34.6 mmol/kg, respectively, lower than that (105.3 mmol/kg and 38.0 mmol/kg) of yellow soil. The pH BC was mainly affected by the content of calcium carbonate and cation exchange capacity (CEC). The difference between pH BC of the two soils was due to their different soil buffer systems and basic properties (initial pH, mechanical composition). Above all, the pH BC of the yellow soil was slightly better than that of purple soil. Meanwhile, acid deposition and nitrogen fertilizer application can threaten soil acidification in the Three Gorges Reservoir. According to the input speed of exogenous acid, a rough estimation of the time of acidification to different pH value could be made. For purple soil, the time acidified to pH of 5.5 (which is defined as acidification) was 194 a, to pH of 4.5 was 252 a, while the time acidified to pH=4.5 of yellow soil only needed 97 a. Excessive and unreasonable nitrogen fertilizer can change the soil CEC, SOC content and soil environmental factors, decline the soil pH and soil buffer capacity, even may speed up the rate of soil acidification. This study obtained preliminary results on pH BC and the influencing factors, however, water level fluctuation in the Three Gorges Reservoir has great impacts on the physical and chemical properties of soil. In the forthcoming studies, the evolution process of the acid and alkali buffer could be of great interests in further investigations in the Three Gorges Area. The knowledge on pH BC and influencing factors of the typical soils in the Three Gorges Reservoir, could not only be conducive to improve our understandings on soil environmental capacity and the typical soil acidification potential, but to provide theoretical basis for assessing regional exogenous acid critical value.

Key words: Three Gorges Reservoir, pH buffer capacity (pH BC), titration curve method, purple soil, yellow soil

中图分类号: 

  • S153
[1] 王文婧, 戴万宏. 安徽主要土壤酸碱性及其酸缓冲性能研究[J]. 中国农学通报, 2012, 28(15):67-72.[WANG W J, DAI W H. Study on soil pH and acidic buffering properties in Anhui Province[J]. Chinese Agricultural Science Bulletin, 2012, 28(15):67-72.]
[2] 黄昌勇. 土壤学[M]. 北京:中国农业出版社, 2000.
[3] 刘春霞, 李月臣, 杨华, 等. 三峡库区重庆段生态与环境敏感性综合评价[J]. 地理学报, 2011, 66(5):631-642.[LIU C X, LI Y C, YANG H, et al. RS and GIS-based assessment for eco-environmental sensitivity of the three gorges reservoir area of Chongqing[J]. Acta Geographica Sinica, 2011, 66(5):631-642.]
[4] 李士杏. 重庆市紫色土酸化现状及机理研究[D]. 重庆:西南农业大学硕士学位论文, 2003.[LI S X. Acidification status of purple soil and its mechanism in Chongqing[D]. Chongqing:Master Dissertation of Southwest University, 2003.]
[5] 李月臣, 闵婕, 高阳华, 等. 三峡库区重庆段酸雨敏感性评价及空间分异特征[J]. 重庆师范大学学报(自然科学版), 2011, 28(6):30-35, 43.[LI Y C, MIN J, GAO Y H, et al. Acid rain sensitivity evaluation and spatial differentiation features of the Three Gorges reservoir area in Chongqing[J]. Journal of Chongqing Normal University (Natural Science), 2011, 28(6):30-35, 43.]
[6] 王征. 三峡库区消落带土壤有机质和氮素含量及分布特征研究[D]. 重庆:重庆大学硕士学位论文, 2012.[WANG Z. Study on soil organic matter and nitrogen content and distribution characteristics of Three Gorges reservoir water-level-fluctuation zone[D]. Chongqing:Master Dissertation of Chongqing University, 2012.]
[7] 程辉, 吴胜军, 王小晓, 等. 三峡库区生态环境效应研究进展[J]. 中国生态农业学报, 2015, 23(2):127-140.[CHENG H, WU S J, WANG X X, et al. Research progress on the effects of the Three Gorges Reservoir on the ecological environment[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2):127-140.]
[8] 解淑艳, 王瑞斌, 郑皓皓. 2005-2011年全国酸雨状况分析[J]. 环境监控与预警, 2012, 4(5):33-37.[XIE S Y, WANG R B, ZHENG H H. Analysis on the acid rain from 2005 to 2011 in China[J]. Environmental Monitoring and Forewarning, 2012, 4(5):33-37.]
[9] 鲁群岷. 三峡库区重庆段大气与降水组分分析及其时空特征研究[D]. 重庆:西南农业大学博士学位论文, 2013.[LU Q M. Analysis of its spatial and temporal characteristics of atmosphere and precipition of Chongqing in Three Gorges reservoir area[D]. Chongqing:Doctor Dissertation of Southwest University, 2013.]
[10] HU Z Y, XU C K, ZHOU L N, et al. Contribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of southern China[J]. Pedosphere, 2007, 17(3):360-365.
[11] OKAZAKI M, XU G S, SUN Z P. Effects of acidic deposition on soil ecosystems under forest in the Chongqing region of China[J]. Soil Science and Plant Nutrition, 1998, 44(2):187-196.
[12] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462.
[13] 汪吉东, 戚冰洁, 张永春, 等. 长期施肥对砂壤质石灰性潮土土壤酸碱缓冲体系的影响[J]. 应用生态学报, 2012, 23(4):1 031-1 036.[WANG J D, QI B J, ZHANG Y C, et al. Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil[J]. Chinese Journal of Applied Ecology, 2012, 23(4):1 031-1 036.]
[14] WEAVER A R, KISSEL D E, CHEN F, et al. Mapping soil pH buffering capacity of selected fields in the coastal plain[J]. Soil Science Society of America Journal, 2004, 68(2):662-668.
[15] HUANG P, ZHANG J B, XIN X L, et al. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain[J]. Journal of Integrative Agriculture, 2015, 14(1):148-157.
[16] 刘京. 三峡紫色土坡耕地小流域氮磷收支及流失风险研究[D]. 重庆:重庆大学博士学位论文, 2011.[LIU J. Input-output budgets for N and P in a typical purple soil sloping ploughland in Three Gorges Areas[D]. Chongqing:Doctor Dissertation of Chongqing University, 2011.]
[17] 周鑫斌, 温明霞, 王秀英, 等. 三峡重庆库区柑橘园氮素平衡状况研究[J]. 植物营养与肥料学报, 2011, 17(1):88-94.[ZHOU X B, WEN M X, WANG X Y, et al. Soil nitrogen balance in citrus orchards of the Three Gorges area in Chongqing[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1):88-94.]
[18] GOULDING K W T, BAILEY N J, BRADBURY N J, et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes[J]. New Phytologist, 1998, 139(1):49-58.
[19] 黄平, 张佳宝, 朱安宁, 等. 黄淮海平原典型潮土的酸碱缓冲性能[J]. 中国农业科学, 2009, 42(7):2 392-2 396.[HUANG P, ZHANG J B, ZHU A N, et al. Acid and alkaline buffering capacity of typical fluvor-aquic soil in Huang-Huai-Hai Plain[J]. Scientia Agricultura Sinica, 2009, 42(7):2392-2396.]
[20] 姜军, 徐仁扣, 赵安珍. 用酸碱滴定法测定酸性红壤的pH缓冲容量[J]. 土壤通报, 2006, 37(6):1 247-1 248.[JIANG J, XU R K, ZHAO A Z. Determination of pH buffer capacity of acid red soils by acid-base titration[J]. Chinese Journal of Soil Science, 2006, 37(6):1247-1248.]
[21] 成杰民, 胡光鲁, 潘根兴. 用酸碱滴定曲线拟合参数表征土壤对酸缓冲能力的新方法[J]. 农业环境科学学报, 2004, 23(3):569-573.[CHENG J M, HU G L, PAN G X. New Method for evaluating buffering capacity and equilibrium pH of paddy soil with simulation parameter[J]. Journal of Agro-Environment Science, 2004, 23(3):569-573.]
[22] ULRICH B. Natural and anthropogenic components of soil acidification[J]. Zeitschrift für Pflanzenernährung und Bodenkunde, 1986, 149(6):702-717.
[23] AITKEN R L, MOODY P W. The effect of valence and ionic-strength on the measurement of pH buffer capacity[J]. Australian Journal of Soil Research, 1994, 32(5):975-984.
[24] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
[25] HUANG P, ZHANG J B, ZHU A N, et al. Acid and alkali buffer capacity of typical fluvor-aquic soil in Huang-Huai-Hai Plain[J]. Agricultural Sciences in China, 2009, 8(11):1 378-1 383.
[26] 廖柏寒, 李长生. 土壤对酸沉降缓冲机制探讨[J]. 环境科学, 1989, 10(1):30-34,96.[LIAO B H, LI C S. Buffering mechanism of soil for acidic precipitation[J]. Environmental Science, 1989, 10(1):30-34,96.]
[27] 林勇. 模拟酸雨对三峡库区四种典型土壤酸化影响研究[D]. 重庆:重庆大学硕士学位论文, 2006.[LIN Y. Study on effects of simulated acid rain on acidification of four types of typical soils from the Three Gorges Reservoir Region[D]. Chongqing:Master Dissertation of Chongqing University, 2006.]
[28] 张华. 紫色土-作物系统对酸雨的响应与机理研究[D]. 重庆:西南大学博士学位论文, 2007.[ZHANG H. Study on effect of acid rain on purple soil-crop system and its influence mechanism[D]. Chongqing:Doctor Dissertation of Southwest University, 2007.]
[29] 王波. 三峡工程对库区生态环境影响的综合评价[D]. 北京:北京林业大学博士学位论文, 2009.[WANG B. Comprehensive assessment of the Three Gorges Project's impact on the eco-environment in reservoir area[D]. Beijing:Doctor Dissertation of Beijing Forestry University, 2009.]
[30] 牟树森, 青长乐. 环境土壤学[M]. 北京:农业出版社, 1993.
[1] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618.
[2] 黄亚男, 纪道斌, 龙良红, 刘德富, 宋林旭, 苏青青. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(03): 461-470.
[3] 应弘, 李阳兵. 三峡库区腹地草堂溪小流域土地功能格局变化[J]. 长江流域资源与环境, 2017, 26(02): 227-237.
[4] 祖波, 周领, 李国权, 刘波. 三峡库区重庆段某排污口下游污染物降解研究[J]. 长江流域资源与环境, 2017, 26(01): 134-141.
[5] 刘均卫, 刘涛. 三峡库区支流常年库区航道通航尺度研究[J]. 长江流域资源与环境, 2016, 25(11): 1711-1719.
[6] 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942.
[7] 王晓荣, 程瑞梅, 肖文发, 潘磊, 曾立雄. 三峡库区消落带水淹初期主要优势草本植物生态位变化特征[J]. 长江流域资源与环境, 2016, 25(03): 404-411.
[8] 王林, 陈正洪, 代娟, 汤阳. 气象因子与地理因子对长江三峡库区雾的影响[J]. 长江流域资源与环境, 2015, 24(10): 1799-1804.
[9] 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350.
[10] 施鹏程, 彭道黎, 黄国胜, 王雪军, 曾伟生, 马炜, 叶林妹. 三峡库区乔木林生物量和碳储量的估算[J]. 长江流域资源与环境, 2015, 24(06): 1052-1059.
[11] 吕明权, 吴胜军, 温兆飞, 陈吉龙, 姜毅, 甘捷. 基于SCS-CN与MUSLE模型的三峡库区小流域侵蚀产沙模拟[J]. 长江流域资源与环境, 2015, 24(05): 860-867.
[12] 刘晓冉, 杨茜, 程炳岩, 张天宇. 三峡库区21世纪气候变化的情景预估分析[J]. 长江流域资源与环境, 2010, 19(01): 42-.
[13] 王丽婧, 郑丙辉, 李子成. 三峡库区及上游流域面源污染特征与防治策略[J]. 长江流域资源与环境, 2009, 18(8): 783-.
[14] 王鹏程, 姚, 婧, 肖文发, 张守攻, 黄志霖, 曾立雄, 潘, 磊. 三峡库区森林植被分布的地形分异特征[J]. 长江流域资源与环境, 2009, 18(6): 528-.
[15] 叶殿秀 张 强 邹旭恺 陈鲜艳. 近几十年三峡库区主要气象灾害变化趋势[J]. 长江流域资源与环境, 2009, 18(3): 296-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[2] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[3] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[4] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[5] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[6] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[7] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .
[8] 濮励杰,赵姚阳, 金平华, 王金磊, 黄贤金,. 137Cs示踪红壤丘陵区坡地土壤侵蚀的研究——以江西丰城市为例[J]. 长江流域资源与环境, 2004, 13(6): 562 -567 .
[9] 周廷刚,张其良. 长江上游水土流失成因及治理模式研究——以重庆市城口县为例[J]. 长江流域资源与环境, 2004, 13(1): 89 -93 .
[10] 徐丽华 岳文泽. null[J]. 长江流域资源与环境, 2009, 18(3): 222 -228 .