长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 606-612.doi: 10.11870/cjlyzyyhj201604010
闵文彬
MIN Wen-bin
摘要: 空气动力学阻抗的准确估算是目前卫星反演地表显热通量的关键,为了准确反演藏东南地区的地表显热通量,利用2013年6月10日西藏林芝地区的草地、麦田、河滩、林地阴坡和阳坡5种下垫面的边界层观测数据,分析常用的Thom_1975, Thom_1977和Choudhury空气动力学阻抗估算模型的适应性。结果表明:林地阴坡Choudhury模型估算值与涡动相关测量的结果有较好的一致性,其他下垫面建议采用Thom(1975)模型。
中图分类号:
[1] 李辉东, 关德新, 袁凤辉, 等. 科尔沁温带草甸能量平衡的日季变化特征[J]. 应用生态学报, 2014, 25(1): 69-76. [LI HD, GUAN D X, YUAN F H, et al. Diurnal and seasonal variations of energy balance over Horqin meadow[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 69-76.] [2] 闵文彬, 李宾. 四川盆地丘陵区地表显热通量分析[J]. 高原山地气象研究, 2010, 30(3): 58-61. [MIN W B, LI B. Analysis of sensible heat flux over hilly land in Sichuan Basin[J]. Plateau and Mountain Meteorology Research, 2010, 30(3): 58-61.] [3] 王鸽, 韩琳, 唐信英, 等. 藏东南地区复杂下垫面能量收支特征分析[J]. 高原山地气象研究, 2014, 34(4): 44-47, 71. [WANG G, HAN L, TANG X Y, et al. Analysis on the features of energy budget on the complicated underlying surfaces in Southeast Tibet[J]. Plateau and Mountain Meteorology Research, 2014, 34(4): 44-47, 71.] [4] 李英, 卢萍. 青藏高原东南缘近地层微气象学特征对比分析[J]. 高原山地气象研究, 2013, 33(4): 49-55. [LI Y, LU P. Comparative analysis of surface-layer micrometeorological characteristics in the surrounding area on the southeast edge of Tibetan Plateau[J]. Plateau and Mountain Meteorology Research, 2013, 33(4): 49-55.] [5] 李英, 卢萍, 丁红英, 等. 成都平原农田下垫面地表通量特征及能量平衡分析[J]. 高原山地气象研究, 2013, 33(1): 35-40. [LI Y, LU P, DING H Y, et al. Analysis of surface fluxes characteristics and energy budget in the cropland surface in Chengdu Plain[J]. Plateau and Mountain Meteorology Research, 2013, 33(1): 35-40.] [6] 李玉梅, 彭玉麟, 简茂球, 等. 中国南方地表感热通量的时空变化[J]. 热带气象学报, 2014, 30(6): 1027-1036. [LI Y M, PENG Y L, JIAN M Q, et al. Spatio-temporal variation of sensible heat flux over Southern China[J]. Journal of Tropical Meteorology, 2014, 30(6): 1027-1036.] [7] 李振朝, 韦志刚, 吕世华, 等. 河西地区地表感热特征分析[J]. 高原气象, 2007, 26(2): 293-299. [LI Z C, WEI Z G, LV S H, et al. Analyses on surface sensible heat characteristics over Hexi Region[J]. Plateau Meteorology, 2007, 26(2): 293-299.] [8] 王丽娟, 左洪超, 陈继伟, 等. 遥感估算绿洲-沙漠下垫面地表温度及感热通量[J]. 高原气象, 2012, 31(3): 646-656. [WANG L J, ZUO H C, CHEN J W, et al. Land surface temperature and sensible heat flux estimated from remote sensing over oasis and desert[J]. Plateau Meteorology, 2012, 31(3): 646-656.] [9] MIN W B, LI Y Q, XU X D, et al. Comparative analysis of satellite remotely-sensed surface energy flux and ground-based observation in the Sichuan Basin[J]. Journal of the Meteorological Society of Japan, 2012, 90C: 203-213. [10] 马耀明, 王介民, MENENTI M, 等. 卫星遥感结合地面观测估算非均匀地表区域能量通量[J]. 气象学报, 1999, 57(2): 180-189. [MA Y M, WANG J M, MENENTI M, et al. Estimation of flux densities over the heterogeneous land surface with the aid of satellite remote sensing and field observation[J]. Acta Meteorologica Sinica, 1999, 57(2): 180-189.] [11] MIN W B, CHEN Z M, SUN L S, et al. A scheme for pixel-scale aerodynamic surface temperature over hilly land[J]. Advances in Atmospheric Sciences, 2004, 21(1): 125-131. [12] 陈镜明. 现用遥感蒸散模式中的一个重要缺点及改进[J]. 科学通报, 1988(6): 454-457. [13] BASTIAANSSEN W G M, PELGRUM H, WANG J, et al. A remote sensing surface energy balance algorithm for land (SEBAL). : part 2: validation[J]. Journal of Hydrology, 1998, 212-213: 213-229. [14] LIU S, MAO D, LU L. Measurement and estimation of the aerodynamic resistance[J]. Hydrology and Earth System Sciences Discussions, 2006, 3: 681-705. [15] LIU S M, LU L, MAO D, et al. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements[J]. Hydrology and Earth System Sciences, 2007, 11(2): 769-783. [16] 张杰, 张强, 黄建平. 空气动力学阻抗算法在半干旱区的应用比较和遥感反演[J]. 高原气象, 2010, 29(3): 662-670. [ZHANG J, ZHANG Q, HUANG J P. Application of aerodynamic resistance arithmetic in semi-arid region of china and retrival from remote sensing[J]. Plateau Meteorology, 2010, 29(3): 662-670.] [17] 张杰, 黄建平, 张强. 稀疏植被区空气动力学粗糙度特征及遥感反演[J]. 生态学报, 2010, 30(11): 2819-2827. [ZHANG J, HUANG J P, ZHANG Q. Retrieval of aerodynamic roughness length character over sparse vegetation region[J]. Acta Ecologica Sinica, 2010, 30(11): 2819-2827.] [18] 闵文彬, 李宾, 彭骏, 等. 青藏高原东南部及其邻近地区FY-2E卫星晴空大气可降水量评估[J]. 长江流域资源与环境, 2015, 24(4): 625-631. [MIN W B, LI B, PENG J, et al. Evaluation of total precipitable water derived from FY-2E satellite data over the southeast of tibetan plateau and its adjacent areas[J]. Resources and Environment in the Yangtza Basin, 2015, 24(4): 625-631.] [19] THOM A S. Momentum, mass and heat exchange of plant communities[M]//MONTEITH J L. Vegetation and the Atmosphere. London: Academic Press, 1975: 57-109. [20] THOM A S, STEWART J B, OLIVER H R, et al. Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(427): 93-105. [21] THOM A S, OLIVER H R. On Penman's equation for estimating regional evaporation[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(436): 345-357. [22] CHOUDHURY B J, REGINATO R J, IDSO S B. An analysis of infrared temperature observations over wheat and calculation of latent heat flux[J]. Agricultural and Forest Meteorology, 1986, 37(1): 75-88. [23] 辛晓洲, 柳钦火, 唐勇, 等. 用CBERS-02卫星和MODIS数据联合反演地表蒸散通量[J]. 中国科学E辑信息科学, 2005, 35(S1): 125-140. [XIN X Z, LIU Q H, TANG Y, et al. Estimating surface evapotranspiration using combined MODIS and CBERS-02 data[J]. Science in China Series E Engineering & Materials Science, 2005, 48(S2): 145-160.] [24] FRIEDL M A. Modeling land surface fluxes using a sparse canopy model and radiometric surface temperature measurements[J]. Journal of Geophysical Research, 1995, 100(D12): 25435-25446. [25] MONTEITH J L. Principles of Environmental Physics[M]. London: Edward Arnold, 1973. |
[1] | 张秀琴, 王亚华. 中国水资源管理适应气候变化的研究综述[J]. 长江流域资源与环境, 2015, 24(12): 2061-2068. |
[2] | 杨 军,刘俊卿,强德厚. 探索性数据分析在西藏气候变化趋势研究中的应用[J]. 长江流域资源与环境, 2007, 16(4): 543-543. |
[3] | 何祖慰,杨忠,罗辑. 西藏昌都地区土地利用结构熵值时序分析[J]. 长江流域资源与环境, 2007, 16(2): 192-192. |
|